Matches in SemOpenAlex for { <https://semopenalex.org/work/W126964110> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W126964110 endingPage "164" @default.
- W126964110 startingPage "117" @default.
- W126964110 abstract "The realm of biology is always governed by underlying electronic effects. These effects are often treated implicitly and may go nearly unnoticed in classical biomolecular simulations, such as Monte Carlo or molecular dynamics. It is important to remember, however, that these classical methods always operate on the single, ground electronic potential energy surface (PES). Furthermore, classical methods assume the classical behavior of the atomic nuclei, and thus rely on the so-called Born–Oppenheimer approximation (BAO) heavily used in quantum mechanics, as discussed in detail below. Due to the BAO, the ground PES can be obtained by finding the optimal electronic solution for every position of stationary classical nuclei. The combined electronic and nuclear energy as a function of nuclear coordinates in the PES. The Born–Oppenheimer PES is usually very close to the chemical reality. Parameters of classical force fields are optimized to reproduce this ground PES, either calculated quantum mechanically or derived from the experiment. Thus, electronic structure is always an active player in classical simulations through the parameters of the force field in use. However, when it comes to the assessment of the mechanism of a biochemical reaction that involves breaking and forming of covalent bonds, quantum mechanics is an almost exclusive reliable approach, with a prominent classical exception being the empirical valence bond method. Furthermore, there is a large class of biological processes that simply cannot be assessed without explicit quantum mechanical treatment. An obvious example is electron transfer in enzymes or DNA that plays a pivotal role in every oxidation or reduction event in living cells." @default.
- W126964110 created "2016-06-24" @default.
- W126964110 creator A5000151397 @default.
- W126964110 date "2012-01-01" @default.
- W126964110 modified "2023-09-23" @default.
- W126964110 title "Quantum Mechanical Insights into Biological Processes at the Electronic Level" @default.
- W126964110 cites W1498377335 @default.
- W126964110 cites W1979368979 @default.
- W126964110 cites W1982823228 @default.
- W126964110 cites W1983530135 @default.
- W126964110 cites W1987696643 @default.
- W126964110 cites W1990161102 @default.
- W126964110 cites W1990863438 @default.
- W126964110 cites W1997151511 @default.
- W126964110 cites W2003320348 @default.
- W126964110 cites W2004303971 @default.
- W126964110 cites W2006947798 @default.
- W126964110 cites W2011026418 @default.
- W126964110 cites W2012458244 @default.
- W126964110 cites W2012778107 @default.
- W126964110 cites W2014973791 @default.
- W126964110 cites W2015313222 @default.
- W126964110 cites W2021905543 @default.
- W126964110 cites W2022614861 @default.
- W126964110 cites W2031856796 @default.
- W126964110 cites W2032436962 @default.
- W126964110 cites W2035278811 @default.
- W126964110 cites W2044940178 @default.
- W126964110 cites W2045422561 @default.
- W126964110 cites W2046001409 @default.
- W126964110 cites W2059104184 @default.
- W126964110 cites W2068920655 @default.
- W126964110 cites W2076555138 @default.
- W126964110 cites W2079235087 @default.
- W126964110 cites W2084498151 @default.
- W126964110 cites W2090826418 @default.
- W126964110 cites W2095407146 @default.
- W126964110 cites W2100949693 @default.
- W126964110 cites W2110576774 @default.
- W126964110 cites W2110872379 @default.
- W126964110 cites W2320600715 @default.
- W126964110 doi "https://doi.org/10.1007/978-1-4614-2146-7_6" @default.
- W126964110 hasPublicationYear "2012" @default.
- W126964110 type Work @default.
- W126964110 sameAs 126964110 @default.
- W126964110 citedByCount "0" @default.
- W126964110 crossrefType "book-chapter" @default.
- W126964110 hasAuthorship W126964110A5000151397 @default.
- W126964110 hasConcept C121332964 @default.
- W126964110 hasConcept C41008148 @default.
- W126964110 hasConcept C62520636 @default.
- W126964110 hasConcept C84114770 @default.
- W126964110 hasConceptScore W126964110C121332964 @default.
- W126964110 hasConceptScore W126964110C41008148 @default.
- W126964110 hasConceptScore W126964110C62520636 @default.
- W126964110 hasConceptScore W126964110C84114770 @default.
- W126964110 hasLocation W1269641101 @default.
- W126964110 hasOpenAccess W126964110 @default.
- W126964110 hasPrimaryLocation W1269641101 @default.
- W126964110 hasRelatedWork W2093578348 @default.
- W126964110 hasRelatedWork W2096946506 @default.
- W126964110 hasRelatedWork W2350741829 @default.
- W126964110 hasRelatedWork W2358668433 @default.
- W126964110 hasRelatedWork W2376932109 @default.
- W126964110 hasRelatedWork W2382290278 @default.
- W126964110 hasRelatedWork W2390279801 @default.
- W126964110 hasRelatedWork W2748952813 @default.
- W126964110 hasRelatedWork W2766271392 @default.
- W126964110 hasRelatedWork W2899084033 @default.
- W126964110 isParatext "false" @default.
- W126964110 isRetracted "false" @default.
- W126964110 magId "126964110" @default.
- W126964110 workType "book-chapter" @default.