Matches in SemOpenAlex for { <https://semopenalex.org/work/W1277110628> ?p ?o ?g. }
- W1277110628 endingPage "1111" @default.
- W1277110628 startingPage "1096" @default.
- W1277110628 abstract "A teaching-learning-based optimization algorithm (TLBO) which uses a variable population size in the form of a triangle form (VTTLBO) is proposed in the paper. The main goal of the proposed method is to decrease the computing cost of original TLBO and extend it for optimizing the parameters of artificial neural network (ANN). In the proposed algorithm, the evolutionary process is divided into some equal periods according to the maximal generation. The population size in each period is changed in form of triangle. In the linear increasing phase of population’s number, some new individuals are generated with gauss distribution by using the adaptive mean and variance of the population. In the linear decreasing phase of population׳s number, some highly similar individuals are deleted. To compare the performance of the proposed method with some other methods, Saw-tooth teaching-learning-based optimization algorithm is also designed with simulating the basic principle of Saw-tooth genetic algorithm (STGA), and some other EAs with the fixed population size are also simulated. A variety of benchmark problems and system modeling and prediction problems with ANN are tested in this paper, the results indicate that the computation cost of the given method is small and the convergence accuracy and speed of it are high." @default.
- W1277110628 created "2016-06-24" @default.
- W1277110628 creator A5029410135 @default.
- W1277110628 creator A5050736924 @default.
- W1277110628 creator A5058311901 @default.
- W1277110628 creator A5069617479 @default.
- W1277110628 date "2016-01-01" @default.
- W1277110628 modified "2023-10-15" @default.
- W1277110628 title "Teaching-learning-based optimization with variable-population scheme and its application for ANN and global optimization" @default.
- W1277110628 cites W1970037791 @default.
- W1277110628 cites W1983643579 @default.
- W1277110628 cites W1983833629 @default.
- W1277110628 cites W1984486311 @default.
- W1277110628 cites W1984715643 @default.
- W1277110628 cites W1993934288 @default.
- W1277110628 cites W1996689315 @default.
- W1277110628 cites W1997600725 @default.
- W1277110628 cites W1998151312 @default.
- W1277110628 cites W1999284878 @default.
- W1277110628 cites W2000538148 @default.
- W1277110628 cites W2001422417 @default.
- W1277110628 cites W2009435097 @default.
- W1277110628 cites W2015776612 @default.
- W1277110628 cites W2015993938 @default.
- W1277110628 cites W2021490042 @default.
- W1277110628 cites W2021905979 @default.
- W1277110628 cites W2024619917 @default.
- W1277110628 cites W2030121779 @default.
- W1277110628 cites W2032140051 @default.
- W1277110628 cites W2042378842 @default.
- W1277110628 cites W2049580026 @default.
- W1277110628 cites W2051507224 @default.
- W1277110628 cites W2053074949 @default.
- W1277110628 cites W2057332356 @default.
- W1277110628 cites W2066141910 @default.
- W1277110628 cites W2071490560 @default.
- W1277110628 cites W2079581672 @default.
- W1277110628 cites W2082741438 @default.
- W1277110628 cites W2082888448 @default.
- W1277110628 cites W2084031390 @default.
- W1277110628 cites W2090916622 @default.
- W1277110628 cites W2091342063 @default.
- W1277110628 cites W2094340389 @default.
- W1277110628 cites W2094631910 @default.
- W1277110628 cites W2105593825 @default.
- W1277110628 cites W2127931254 @default.
- W1277110628 cites W2129120446 @default.
- W1277110628 cites W2131613989 @default.
- W1277110628 cites W2137340504 @default.
- W1277110628 cites W2139339670 @default.
- W1277110628 cites W2144317842 @default.
- W1277110628 cites W2151554678 @default.
- W1277110628 cites W2152178978 @default.
- W1277110628 cites W2153272405 @default.
- W1277110628 cites W2153721878 @default.
- W1277110628 cites W2162145193 @default.
- W1277110628 doi "https://doi.org/10.1016/j.neucom.2015.08.068" @default.
- W1277110628 hasPublicationYear "2016" @default.
- W1277110628 type Work @default.
- W1277110628 sameAs 1277110628 @default.
- W1277110628 citedByCount "35" @default.
- W1277110628 countsByYear W12771106282016 @default.
- W1277110628 countsByYear W12771106282017 @default.
- W1277110628 countsByYear W12771106282018 @default.
- W1277110628 countsByYear W12771106282019 @default.
- W1277110628 countsByYear W12771106282020 @default.
- W1277110628 countsByYear W12771106282021 @default.
- W1277110628 countsByYear W12771106282022 @default.
- W1277110628 countsByYear W12771106282023 @default.
- W1277110628 crossrefType "journal-article" @default.
- W1277110628 hasAuthorship W1277110628A5029410135 @default.
- W1277110628 hasAuthorship W1277110628A5050736924 @default.
- W1277110628 hasAuthorship W1277110628A5058311901 @default.
- W1277110628 hasAuthorship W1277110628A5069617479 @default.
- W1277110628 hasConcept C105902424 @default.
- W1277110628 hasConcept C11413529 @default.
- W1277110628 hasConcept C126255220 @default.
- W1277110628 hasConcept C13280743 @default.
- W1277110628 hasConcept C134306372 @default.
- W1277110628 hasConcept C137836250 @default.
- W1277110628 hasConcept C144024400 @default.
- W1277110628 hasConcept C149923435 @default.
- W1277110628 hasConcept C154945302 @default.
- W1277110628 hasConcept C162324750 @default.
- W1277110628 hasConcept C182365436 @default.
- W1277110628 hasConcept C184497298 @default.
- W1277110628 hasConcept C185798385 @default.
- W1277110628 hasConcept C205649164 @default.
- W1277110628 hasConcept C2777303404 @default.
- W1277110628 hasConcept C2908647359 @default.
- W1277110628 hasConcept C33923547 @default.
- W1277110628 hasConcept C41008148 @default.
- W1277110628 hasConcept C50522688 @default.
- W1277110628 hasConcept C50644808 @default.
- W1277110628 hasConcept C8880873 @default.
- W1277110628 hasConceptScore W1277110628C105902424 @default.
- W1277110628 hasConceptScore W1277110628C11413529 @default.
- W1277110628 hasConceptScore W1277110628C126255220 @default.