Matches in SemOpenAlex for { <https://semopenalex.org/work/W127860710> ?p ?o ?g. }
- W127860710 abstract "Photonic crystal fibres are capable of special light guiding properties that ordinary optical fibres do not possess, and efforts have been made to numerically model these properties. The plane wave expansion method is one of the numerical methods that has been used. Unfortunately, the function that describes the material in the fibre n(x) is discontinuous, and convergence of the plane wave expansion method is adversely affected by this. For this reason, the plane wave expansion method may not be every applied mathematician’s first choice method but we will show that it is comparable in implementation and convergence to the standard finite element method. In particular,an optimal preconditioner for the system matrix A can easily be obtained and matrixvector products with A can be computed in O(N logN) operations (where N is the size of A) using the Fast Fourier Transform. Although we are always interested in the efficiency of the method, the main contribution of this thesis is the development of convergence analysis for the plane wave expansion method applied to 4 different 2nd-order elliptic eigenvalue problems in R and R2 with discontinuous coefficients. To obtain the convergence analysis three issues must be confronted: regularity of the eigenfunctions; approximation error with respect to plane waves; and stability of the plane wave expansion method. We successfully tackle the regularity and approximation error issues but proving stability relies on showing that the plane wave expansion method is equivalent to a spectral Galerkin method, and not all of our problems allow this. However, stability is observed in all of our numerical computations. It has been proposed in [40], [53], [63] and [64] that replacing the discontinuous coefficients in the problem with smooth coefficients will improve the plane wave expansion method, despite the additional error. Our convergence analysis for the method in[63] and [64] shows that the overall rate of convergence is no faster than before. To define A we need the Fourier coefficients of n(x), and sometimes these must be approximated, thus adding an additional error. We analyse the errors for a method where n(x) is sampled on a uniform grid and the Fourier coefficients are computed with the Fast Fourier Transform. We then devise a strategy for setting the grid-spacing that will recover the convergence rate of the plane wave expansion method with exact Fourier coefficients." @default.
- W127860710 created "2016-06-24" @default.
- W127860710 creator A5026274660 @default.
- W127860710 date "2008-09-01" @default.
- W127860710 modified "2023-09-25" @default.
- W127860710 title "Numerical computation of band gaps in photonic crystal fibres" @default.
- W127860710 cites W1506342804 @default.
- W127860710 cites W1507437630 @default.
- W127860710 cites W1563653928 @default.
- W127860710 cites W1570895503 @default.
- W127860710 cites W1575147392 @default.
- W127860710 cites W1576347883 @default.
- W127860710 cites W1582734821 @default.
- W127860710 cites W1582934392 @default.
- W127860710 cites W1585019170 @default.
- W127860710 cites W1597209545 @default.
- W127860710 cites W1602383637 @default.
- W127860710 cites W1642884126 @default.
- W127860710 cites W1760551737 @default.
- W127860710 cites W1788477997 @default.
- W127860710 cites W1964791778 @default.
- W127860710 cites W1967349653 @default.
- W127860710 cites W1974280159 @default.
- W127860710 cites W1977128668 @default.
- W127860710 cites W1986144597 @default.
- W127860710 cites W1988711403 @default.
- W127860710 cites W1991429010 @default.
- W127860710 cites W1995904554 @default.
- W127860710 cites W2001619274 @default.
- W127860710 cites W2001811200 @default.
- W127860710 cites W2008486669 @default.
- W127860710 cites W2009797306 @default.
- W127860710 cites W2011964761 @default.
- W127860710 cites W2012291036 @default.
- W127860710 cites W2015776881 @default.
- W127860710 cites W2021791365 @default.
- W127860710 cites W2022371956 @default.
- W127860710 cites W2028165058 @default.
- W127860710 cites W2032872999 @default.
- W127860710 cites W2034285234 @default.
- W127860710 cites W2035180740 @default.
- W127860710 cites W2036886211 @default.
- W127860710 cites W2041523977 @default.
- W127860710 cites W2046685153 @default.
- W127860710 cites W2046864078 @default.
- W127860710 cites W2047497908 @default.
- W127860710 cites W2053884902 @default.
- W127860710 cites W2061047482 @default.
- W127860710 cites W2061171222 @default.
- W127860710 cites W2065286616 @default.
- W127860710 cites W2068420086 @default.
- W127860710 cites W2069262775 @default.
- W127860710 cites W2075689277 @default.
- W127860710 cites W2098432400 @default.
- W127860710 cites W2100256277 @default.
- W127860710 cites W2102182691 @default.
- W127860710 cites W2120062331 @default.
- W127860710 cites W2124873766 @default.
- W127860710 cites W2132228050 @default.
- W127860710 cites W2135960390 @default.
- W127860710 cites W2138307113 @default.
- W127860710 cites W2143476164 @default.
- W127860710 cites W2145750111 @default.
- W127860710 cites W2145797846 @default.
- W127860710 cites W2154912613 @default.
- W127860710 cites W2480154215 @default.
- W127860710 cites W2985152630 @default.
- W127860710 cites W2990874754 @default.
- W127860710 cites W3021722416 @default.
- W127860710 cites W3042562017 @default.
- W127860710 cites W3140551210 @default.
- W127860710 cites W2202297031 @default.
- W127860710 cites W3143943687 @default.
- W127860710 cites W3195121869 @default.
- W127860710 hasPublicationYear "2008" @default.
- W127860710 type Work @default.
- W127860710 sameAs 127860710 @default.
- W127860710 citedByCount "1" @default.
- W127860710 countsByYear W1278607102013 @default.
- W127860710 crossrefType "dissertation" @default.
- W127860710 hasAuthorship W127860710A5026274660 @default.
- W127860710 hasConcept C106487976 @default.
- W127860710 hasConcept C112972136 @default.
- W127860710 hasConcept C115827552 @default.
- W127860710 hasConcept C119857082 @default.
- W127860710 hasConcept C120665830 @default.
- W127860710 hasConcept C121332964 @default.
- W127860710 hasConcept C128803854 @default.
- W127860710 hasConcept C134306372 @default.
- W127860710 hasConcept C135628077 @default.
- W127860710 hasConcept C158693339 @default.
- W127860710 hasConcept C159985019 @default.
- W127860710 hasConcept C162324750 @default.
- W127860710 hasConcept C167431342 @default.
- W127860710 hasConcept C17825722 @default.
- W127860710 hasConcept C186899397 @default.
- W127860710 hasConcept C192562407 @default.
- W127860710 hasConcept C207864730 @default.
- W127860710 hasConcept C2524010 @default.
- W127860710 hasConcept C2777303404 @default.