Matches in SemOpenAlex for { <https://semopenalex.org/work/W127978250> ?p ?o ?g. }
- W127978250 endingPage "103" @default.
- W127978250 startingPage "94" @default.
- W127978250 abstract "Background subtraction (BS) is the art of separating moving objects from their background. The Background Modeling (BM) is one of the main steps of the BS process. Several subspace learning (SL) algorithms based on matrix and tensor tools have been used to perform the BM of the scenes. However, several SL algorithms work on a batch process increasing memory consumption when data size is very large. Moreover, these algorithms are not suitable for streaming data when the full size of the data is unknown. In this work, we propose an incremental tensor subspace learning that uses only a small part of the entire data and updates the low-rank model incrementally when new data arrive. In addition, the multi-feature model allows us to build a robust low-rank background model of the scene. Experimental results shows that the proposed method achieves interesting results for background subtraction task." @default.
- W127978250 created "2016-06-24" @default.
- W127978250 creator A5026330690 @default.
- W127978250 creator A5046143134 @default.
- W127978250 creator A5061582278 @default.
- W127978250 creator A5082418171 @default.
- W127978250 date "2014-01-01" @default.
- W127978250 modified "2023-10-01" @default.
- W127978250 title "Incremental and Multi-feature Tensor Subspace Learning Applied for Background Modeling and Subtraction" @default.
- W127978250 cites W1513013675 @default.
- W127978250 cites W1516231221 @default.
- W127978250 cites W1874745161 @default.
- W127978250 cites W1967077133 @default.
- W127978250 cites W1988061476 @default.
- W127978250 cites W1994727741 @default.
- W127978250 cites W2013912476 @default.
- W127978250 cites W2024165284 @default.
- W127978250 cites W2030449681 @default.
- W127978250 cites W2042003685 @default.
- W127978250 cites W2062481674 @default.
- W127978250 cites W2091741383 @default.
- W127978250 cites W2103537693 @default.
- W127978250 cites W2105906473 @default.
- W127978250 cites W2112755387 @default.
- W127978250 cites W2115213191 @default.
- W127978250 cites W2124490330 @default.
- W127978250 cites W2133140216 @default.
- W127978250 cites W2139047213 @default.
- W127978250 cites W2140839682 @default.
- W127978250 cites W2154249783 @default.
- W127978250 cites W2963937718 @default.
- W127978250 doi "https://doi.org/10.1007/978-3-319-11758-4_11" @default.
- W127978250 hasPublicationYear "2014" @default.
- W127978250 type Work @default.
- W127978250 sameAs 127978250 @default.
- W127978250 citedByCount "36" @default.
- W127978250 countsByYear W1279782502015 @default.
- W127978250 countsByYear W1279782502016 @default.
- W127978250 countsByYear W1279782502017 @default.
- W127978250 countsByYear W1279782502018 @default.
- W127978250 countsByYear W1279782502019 @default.
- W127978250 countsByYear W1279782502020 @default.
- W127978250 countsByYear W1279782502021 @default.
- W127978250 countsByYear W1279782502022 @default.
- W127978250 countsByYear W1279782502023 @default.
- W127978250 crossrefType "book-chapter" @default.
- W127978250 hasAuthorship W127978250A5026330690 @default.
- W127978250 hasAuthorship W127978250A5046143134 @default.
- W127978250 hasAuthorship W127978250A5061582278 @default.
- W127978250 hasAuthorship W127978250A5082418171 @default.
- W127978250 hasBestOaLocation W1279782502 @default.
- W127978250 hasConcept C111919701 @default.
- W127978250 hasConcept C11413529 @default.
- W127978250 hasConcept C114614502 @default.
- W127978250 hasConcept C138885662 @default.
- W127978250 hasConcept C153180895 @default.
- W127978250 hasConcept C154945302 @default.
- W127978250 hasConcept C155281189 @default.
- W127978250 hasConcept C160633673 @default.
- W127978250 hasConcept C164226766 @default.
- W127978250 hasConcept C202444582 @default.
- W127978250 hasConcept C2776401178 @default.
- W127978250 hasConcept C2779769447 @default.
- W127978250 hasConcept C32653426 @default.
- W127978250 hasConcept C32834561 @default.
- W127978250 hasConcept C33923547 @default.
- W127978250 hasConcept C41008148 @default.
- W127978250 hasConcept C41895202 @default.
- W127978250 hasConcept C68060419 @default.
- W127978250 hasConcept C94375191 @default.
- W127978250 hasConcept C98045186 @default.
- W127978250 hasConceptScore W127978250C111919701 @default.
- W127978250 hasConceptScore W127978250C11413529 @default.
- W127978250 hasConceptScore W127978250C114614502 @default.
- W127978250 hasConceptScore W127978250C138885662 @default.
- W127978250 hasConceptScore W127978250C153180895 @default.
- W127978250 hasConceptScore W127978250C154945302 @default.
- W127978250 hasConceptScore W127978250C155281189 @default.
- W127978250 hasConceptScore W127978250C160633673 @default.
- W127978250 hasConceptScore W127978250C164226766 @default.
- W127978250 hasConceptScore W127978250C202444582 @default.
- W127978250 hasConceptScore W127978250C2776401178 @default.
- W127978250 hasConceptScore W127978250C2779769447 @default.
- W127978250 hasConceptScore W127978250C32653426 @default.
- W127978250 hasConceptScore W127978250C32834561 @default.
- W127978250 hasConceptScore W127978250C33923547 @default.
- W127978250 hasConceptScore W127978250C41008148 @default.
- W127978250 hasConceptScore W127978250C41895202 @default.
- W127978250 hasConceptScore W127978250C68060419 @default.
- W127978250 hasConceptScore W127978250C94375191 @default.
- W127978250 hasConceptScore W127978250C98045186 @default.
- W127978250 hasLocation W1279782501 @default.
- W127978250 hasLocation W1279782502 @default.
- W127978250 hasLocation W1279782503 @default.
- W127978250 hasLocation W1279782504 @default.
- W127978250 hasOpenAccess W127978250 @default.
- W127978250 hasPrimaryLocation W1279782501 @default.
- W127978250 hasRelatedWork W127978250 @default.