Matches in SemOpenAlex for { <https://semopenalex.org/work/W128152812> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W128152812 endingPage "127" @default.
- W128152812 startingPage "120" @default.
- W128152812 abstract "H. Mostafahalamostafa@hotmail.comR. Bahgatrbahgat@rite.comDept. of Computer Science, Faculty of Computers & InformationCairo University, Cairo - EgyptF. Holmgrenfredrikh@sics.seDistributed Systems Laboratory, Swedish Institute of Computer Science (SICS),SwedenAbstract In this paper, we propose a multi-agent system (MAS)to simulate a community of beings that move, eat,reproduce, trade and auction, among other activities. Wedemonstrate how beings using primitive rules result inemerging, non-primitive behavior. Heterogeneity of realworld entities is captured by allowing the user to give thebeings different biological characteristics (e.g. level ofintelligence and risk taking) using a control panel. Ourpaper focuses on our modifications and additions to thework inspired from the sugarscape problem [2].Interesting statistics are obtained from test-runs. TheMAS and the GUI that allows the user to control andobserve the model were developed using our Agent BaseEnvironment built on top of the Mozart ProgrammingSystem; a general-purpose development platform thatsupports concurrency, distribution, resource-aware andsymbolic computation. 1. Introduction In order to investigate the effect of the interplay ofvarious social parameters, social and behavioral scientistshave relied heavily on modeling. Traditional modelingapproaches have the disadvantage of suppressing theheterogeneity of real-world entities [2], deprivingscientists of the benefit of observing the effect ofindividual (microscopic) differences on the aggregate(macroscopic) behavior. The concept of “swarmintelligence” has been recently employed in various areaswhere centralization proved too inefficient or untenable.Each entity in the system aims at carrying out its ownplan and seeking its own good using its own simple rules.The collective plans of all entities culminate in theachievement of a globally sought goal that an individualparticipant does not have enough knowledge or resourcesto pursue. This concept was utilized in modeling complexsocial and behavioral phenomena, as well as in otherdomains, like economics and chemistry. Multi-agent Systems (MAS) [12] is one approach thathelps implementing the above concept since it allows alarge number of (possibly heterogeneous) agents to actautonomously and interact with each other to simulatereal-life entities. The need for large numbers of agents has laid certainguidelines for the implementation of a MAS simulation.The first of these is for an agent to be light-weight toallow the use of large numbers of agents without seriouslyaffecting system performance. Distribution allows agentsto reside on different hosts. Parallelisation techniquesbecome crucial to speed up simulation. MAS shouldtypically be fitted with a graphical tool that allowscontrolling as well as visually observing variousparameters and activities. Since the primary goal of aMAS is to enable modelers to draw conclusions from theirmodels, there should be a way of obtaining usefulinformation from data generated by the model. MAS canhave a statistical add-in that aggregates data to allowmodelers to investigate how/if some parameters correlate. In this paper, we present a MAS simulating individualsin a simple environment. The original scenario wasobtained from [2]; some formulae were then modified,various extensions to the model were proposed andparallel implementation techniques were employed.Agents representing various entities are shown at work ina community of “beings” that aim at maximizing theirwealth of food, and with this in mind, they can reasonabout a number of different activities. The following section presents our simulation modeland interesting statistical results from various runs," @default.
- W128152812 created "2016-06-24" @default.
- W128152812 creator A5034377835 @default.
- W128152812 creator A5039750375 @default.
- W128152812 creator A5047439399 @default.
- W128152812 date "2002-01-01" @default.
- W128152812 modified "2023-09-28" @default.
- W128152812 title "A Multi-Agent System for Behavioral Studies." @default.
- W128152812 cites W1546574211 @default.
- W128152812 cites W169912648 @default.
- W128152812 cites W2076873328 @default.
- W128152812 cites W2889011686 @default.
- W128152812 hasPublicationYear "2002" @default.
- W128152812 type Work @default.
- W128152812 sameAs 128152812 @default.
- W128152812 citedByCount "0" @default.
- W128152812 crossrefType "journal-article" @default.
- W128152812 hasAuthorship W128152812A5034377835 @default.
- W128152812 hasAuthorship W128152812A5039750375 @default.
- W128152812 hasAuthorship W128152812A5047439399 @default.
- W128152812 hasConcept C107457646 @default.
- W128152812 hasConcept C120314980 @default.
- W128152812 hasConcept C154945302 @default.
- W128152812 hasConcept C159985019 @default.
- W128152812 hasConcept C192562407 @default.
- W128152812 hasConcept C193702766 @default.
- W128152812 hasConcept C206345919 @default.
- W128152812 hasConcept C2777673361 @default.
- W128152812 hasConcept C31258907 @default.
- W128152812 hasConcept C41008148 @default.
- W128152812 hasConcept C4679612 @default.
- W128152812 hasConceptScore W128152812C107457646 @default.
- W128152812 hasConceptScore W128152812C120314980 @default.
- W128152812 hasConceptScore W128152812C154945302 @default.
- W128152812 hasConceptScore W128152812C159985019 @default.
- W128152812 hasConceptScore W128152812C192562407 @default.
- W128152812 hasConceptScore W128152812C193702766 @default.
- W128152812 hasConceptScore W128152812C206345919 @default.
- W128152812 hasConceptScore W128152812C2777673361 @default.
- W128152812 hasConceptScore W128152812C31258907 @default.
- W128152812 hasConceptScore W128152812C41008148 @default.
- W128152812 hasConceptScore W128152812C4679612 @default.
- W128152812 hasLocation W1281528121 @default.
- W128152812 hasOpenAccess W128152812 @default.
- W128152812 hasPrimaryLocation W1281528121 @default.
- W128152812 hasRelatedWork W141574873 @default.
- W128152812 hasRelatedWork W1494262406 @default.
- W128152812 hasRelatedWork W1499459758 @default.
- W128152812 hasRelatedWork W1500580571 @default.
- W128152812 hasRelatedWork W1543926423 @default.
- W128152812 hasRelatedWork W1617122886 @default.
- W128152812 hasRelatedWork W2069669114 @default.
- W128152812 hasRelatedWork W2115885679 @default.
- W128152812 hasRelatedWork W2126676434 @default.
- W128152812 hasRelatedWork W2132314786 @default.
- W128152812 hasRelatedWork W2161444263 @default.
- W128152812 hasRelatedWork W2179417754 @default.
- W128152812 hasRelatedWork W2365931432 @default.
- W128152812 hasRelatedWork W2385579987 @default.
- W128152812 hasRelatedWork W2630925409 @default.
- W128152812 hasRelatedWork W2769989726 @default.
- W128152812 hasRelatedWork W3011431430 @default.
- W128152812 hasRelatedWork W3150773172 @default.
- W128152812 hasRelatedWork W82797960 @default.
- W128152812 hasRelatedWork W136746821 @default.
- W128152812 isParatext "false" @default.
- W128152812 isRetracted "false" @default.
- W128152812 magId "128152812" @default.
- W128152812 workType "article" @default.