Matches in SemOpenAlex for { <https://semopenalex.org/work/W128220644> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W128220644 endingPage "219" @default.
- W128220644 startingPage "204" @default.
- W128220644 abstract "Gaussian processes using nonstationary covariance functions are a powerful tool for Bayesian regression with input-dependent smoothness. A common approach is to model the local smoothness by a latent process that is integrated over using Markov chain Monte Carlo approaches. In this paper, we demonstrate that an approximation that uses the estimated mean of the local smoothness yields good results and allows one to employ efficient gradient-based optimization techniques for jointly learning the parameters of the latent and the observed processes. Extensive experiments on both synthetic and real-world data, including challenging problems in robotics, show the relevance and feasibility of our approach." @default.
- W128220644 created "2016-06-24" @default.
- W128220644 creator A5037636074 @default.
- W128220644 creator A5084071835 @default.
- W128220644 creator A5084499878 @default.
- W128220644 date "2008-01-01" @default.
- W128220644 modified "2023-10-16" @default.
- W128220644 title "Nonstationary Gaussian Process Regression Using Point Estimates of Local Smoothness" @default.
- W128220644 cites W198334126 @default.
- W128220644 cites W2051812123 @default.
- W128220644 cites W2068120653 @default.
- W128220644 cites W2149764047 @default.
- W128220644 cites W4234588049 @default.
- W128220644 doi "https://doi.org/10.1007/978-3-540-87481-2_14" @default.
- W128220644 hasPublicationYear "2008" @default.
- W128220644 type Work @default.
- W128220644 sameAs 128220644 @default.
- W128220644 citedByCount "71" @default.
- W128220644 countsByYear W1282206442012 @default.
- W128220644 countsByYear W1282206442013 @default.
- W128220644 countsByYear W1282206442014 @default.
- W128220644 countsByYear W1282206442015 @default.
- W128220644 countsByYear W1282206442016 @default.
- W128220644 countsByYear W1282206442017 @default.
- W128220644 countsByYear W1282206442018 @default.
- W128220644 countsByYear W1282206442019 @default.
- W128220644 countsByYear W1282206442020 @default.
- W128220644 countsByYear W1282206442021 @default.
- W128220644 countsByYear W1282206442022 @default.
- W128220644 countsByYear W1282206442023 @default.
- W128220644 crossrefType "book-chapter" @default.
- W128220644 hasAuthorship W128220644A5037636074 @default.
- W128220644 hasAuthorship W128220644A5084071835 @default.
- W128220644 hasAuthorship W128220644A5084499878 @default.
- W128220644 hasBestOaLocation W1282206441 @default.
- W128220644 hasConcept C102634674 @default.
- W128220644 hasConcept C105795698 @default.
- W128220644 hasConcept C107673813 @default.
- W128220644 hasConcept C111350023 @default.
- W128220644 hasConcept C11413529 @default.
- W128220644 hasConcept C119857082 @default.
- W128220644 hasConcept C121332964 @default.
- W128220644 hasConcept C126255220 @default.
- W128220644 hasConcept C134306372 @default.
- W128220644 hasConcept C154945302 @default.
- W128220644 hasConcept C163716315 @default.
- W128220644 hasConcept C178650346 @default.
- W128220644 hasConcept C2778049539 @default.
- W128220644 hasConcept C33923547 @default.
- W128220644 hasConcept C41008148 @default.
- W128220644 hasConcept C61326573 @default.
- W128220644 hasConcept C62520636 @default.
- W128220644 hasConcept C81692654 @default.
- W128220644 hasConcept C83546350 @default.
- W128220644 hasConceptScore W128220644C102634674 @default.
- W128220644 hasConceptScore W128220644C105795698 @default.
- W128220644 hasConceptScore W128220644C107673813 @default.
- W128220644 hasConceptScore W128220644C111350023 @default.
- W128220644 hasConceptScore W128220644C11413529 @default.
- W128220644 hasConceptScore W128220644C119857082 @default.
- W128220644 hasConceptScore W128220644C121332964 @default.
- W128220644 hasConceptScore W128220644C126255220 @default.
- W128220644 hasConceptScore W128220644C134306372 @default.
- W128220644 hasConceptScore W128220644C154945302 @default.
- W128220644 hasConceptScore W128220644C163716315 @default.
- W128220644 hasConceptScore W128220644C178650346 @default.
- W128220644 hasConceptScore W128220644C2778049539 @default.
- W128220644 hasConceptScore W128220644C33923547 @default.
- W128220644 hasConceptScore W128220644C41008148 @default.
- W128220644 hasConceptScore W128220644C61326573 @default.
- W128220644 hasConceptScore W128220644C62520636 @default.
- W128220644 hasConceptScore W128220644C81692654 @default.
- W128220644 hasConceptScore W128220644C83546350 @default.
- W128220644 hasLocation W1282206441 @default.
- W128220644 hasLocation W1282206442 @default.
- W128220644 hasOpenAccess W128220644 @default.
- W128220644 hasPrimaryLocation W1282206441 @default.
- W128220644 hasRelatedWork W115891841 @default.
- W128220644 hasRelatedWork W128220644 @default.
- W128220644 hasRelatedWork W2056958800 @default.
- W128220644 hasRelatedWork W3199608561 @default.
- W128220644 hasRelatedWork W4280525836 @default.
- W128220644 hasRelatedWork W4300066510 @default.
- W128220644 hasRelatedWork W4311388919 @default.
- W128220644 hasRelatedWork W4384929195 @default.
- W128220644 hasRelatedWork W4384932390 @default.
- W128220644 hasRelatedWork W3097457251 @default.
- W128220644 isParatext "false" @default.
- W128220644 isRetracted "false" @default.
- W128220644 magId "128220644" @default.
- W128220644 workType "book-chapter" @default.