Matches in SemOpenAlex for { <https://semopenalex.org/work/W128408443> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W128408443 endingPage "260" @default.
- W128408443 startingPage "255" @default.
- W128408443 abstract "ABSTRACT The Multiple Knapsack problem (MKP) is a hard combinatorial optimization problem with large application, which embraces many practical problems from different domains, like cargo loading, cutting stock, bin-packing, financial and other management, etc. It also arise as a subproblem in several more complex problems like vehicle routing problem and the algorithms to solve these problems will benefit from any improvement in the field of MKP. The aim of this paper is to compare different kind of heuristic models, statics and dynamics. The heuristics are used by an Ant Colony Optimization (ACO) algorithm to construct solutions to the MKP. KEYWORDS combinatorial optimization, multiple knapsack problem, heuristics 1. INTRODUCTION Combinatorial optimization is the process of finding the best, or optimal solution for problems with a discrete set of feasible solutions. Applications arise in numerous settings involving operations management and logistics. The economic impact of combinatorial optimization is profound, affecting diverse sectors. While much progress has been made in finding exact solutions to some Combinatorial Optimization Problems (COPs), many hard combinatorial problems are still not solved exactly in a reasonable time and require good heuristic methods. The aim of heuristic methods for COPs is to quickly produce good-quality solutions. Modern heuristics include simulated annealing [7], genetic algorithms [4], tabu search [5], ant colony optimization [2,3]. In many practical problems they have proved to be effective and efficient approaches, being flexible to accommodate variations in problem structure and in the objectives considered for the evaluation of solutions. For all these reasons, metaheuristics have probably been one of the most stimulating research topics in optimization for the last two decades. The ACO algorithm were inspired by the observation of real ant colonies. Ants are social insects, that is , insects that live in colonies and whose behavior is directed more to the survival of the colony as a whole than to that of a single individual component of the colony. An important and interesting aspect of ant colonies is how ants can find the shortest path between food sources and their nest. ACO is the recently developed, population-based approach which has been successfully applied to several NP-hard COPs. One of its main ideas is the indirect communication among the individuals of a colony of agents, called ``artificial'' ants, based on an analogy with trails of a chemical substance, called pheromone which real ants use for communication. ACO uses a colony of artificial ants that behaves as cooperative agents in a mathematical space where they are allowed to search and reinforce pathways (solutions) in order to find the optimal ones. Unlike the real-life case, these pathways might contain very complex information. When constructing an initial solution, at each step ants compute a set of feasible moves and select the best one according to some probabilistic rules. These rules are based on the heuristic information and pheromone trail level. The higher value of the pheromone and the heuristic information, the more profitable is to select this move and resume the search. In this paper ACO algorithm for MKP is investigated. The MKP is an important real-life problem. Problems from different industrial fields, can be interpreted like knapsack problem. When the ACO algorithm is applied MKP gives a possibility to use varied heuristic informations. We have concentrated on" @default.
- W128408443 created "2016-06-24" @default.
- W128408443 creator A5013306341 @default.
- W128408443 date "2005-01-01" @default.
- W128408443 modified "2023-09-28" @default.
- W128408443 title "HEURISTICS FOR MULTIPLE KNAPSACK PROBLEM" @default.
- W128408443 cites W1587263632 @default.
- W128408443 cites W1674834782 @default.
- W128408443 cites W1978970913 @default.
- W128408443 cites W2022111106 @default.
- W128408443 cites W2024060531 @default.
- W128408443 cites W2108088553 @default.
- W128408443 cites W2135814502 @default.
- W128408443 cites W2154929945 @default.
- W128408443 cites W2156186849 @default.
- W128408443 cites W22051136 @default.
- W128408443 cites W2339500526 @default.
- W128408443 hasPublicationYear "2005" @default.
- W128408443 type Work @default.
- W128408443 sameAs 128408443 @default.
- W128408443 citedByCount "5" @default.
- W128408443 countsByYear W1284084432012 @default.
- W128408443 countsByYear W1284084432014 @default.
- W128408443 countsByYear W1284084432017 @default.
- W128408443 crossrefType "journal-article" @default.
- W128408443 hasAuthorship W128408443A5013306341 @default.
- W128408443 hasConcept C109718341 @default.
- W128408443 hasConcept C113138325 @default.
- W128408443 hasConcept C11413529 @default.
- W128408443 hasConcept C123370116 @default.
- W128408443 hasConcept C123784306 @default.
- W128408443 hasConcept C126255220 @default.
- W128408443 hasConcept C126980161 @default.
- W128408443 hasConcept C127705205 @default.
- W128408443 hasConcept C137836250 @default.
- W128408443 hasConcept C156273044 @default.
- W128408443 hasConcept C173801870 @default.
- W128408443 hasConcept C194146004 @default.
- W128408443 hasConcept C31258907 @default.
- W128408443 hasConcept C33923547 @default.
- W128408443 hasConcept C37307619 @default.
- W128408443 hasConcept C40128228 @default.
- W128408443 hasConcept C41008148 @default.
- W128408443 hasConcept C52692508 @default.
- W128408443 hasConcept C74172769 @default.
- W128408443 hasConcept C87219788 @default.
- W128408443 hasConcept C94569963 @default.
- W128408443 hasConcept C98036226 @default.
- W128408443 hasConceptScore W128408443C109718341 @default.
- W128408443 hasConceptScore W128408443C113138325 @default.
- W128408443 hasConceptScore W128408443C11413529 @default.
- W128408443 hasConceptScore W128408443C123370116 @default.
- W128408443 hasConceptScore W128408443C123784306 @default.
- W128408443 hasConceptScore W128408443C126255220 @default.
- W128408443 hasConceptScore W128408443C126980161 @default.
- W128408443 hasConceptScore W128408443C127705205 @default.
- W128408443 hasConceptScore W128408443C137836250 @default.
- W128408443 hasConceptScore W128408443C156273044 @default.
- W128408443 hasConceptScore W128408443C173801870 @default.
- W128408443 hasConceptScore W128408443C194146004 @default.
- W128408443 hasConceptScore W128408443C31258907 @default.
- W128408443 hasConceptScore W128408443C33923547 @default.
- W128408443 hasConceptScore W128408443C37307619 @default.
- W128408443 hasConceptScore W128408443C40128228 @default.
- W128408443 hasConceptScore W128408443C41008148 @default.
- W128408443 hasConceptScore W128408443C52692508 @default.
- W128408443 hasConceptScore W128408443C74172769 @default.
- W128408443 hasConceptScore W128408443C87219788 @default.
- W128408443 hasConceptScore W128408443C94569963 @default.
- W128408443 hasConceptScore W128408443C98036226 @default.
- W128408443 hasLocation W1284084431 @default.
- W128408443 hasOpenAccess W128408443 @default.
- W128408443 hasPrimaryLocation W1284084431 @default.
- W128408443 hasRelatedWork W1499258541 @default.
- W128408443 hasRelatedWork W1545869295 @default.
- W128408443 hasRelatedWork W2022338859 @default.
- W128408443 hasRelatedWork W2054174464 @default.
- W128408443 hasRelatedWork W2091402700 @default.
- W128408443 hasRelatedWork W2138398527 @default.
- W128408443 hasRelatedWork W2145407993 @default.
- W128408443 hasRelatedWork W2154662456 @default.
- W128408443 hasRelatedWork W2158536378 @default.
- W128408443 hasRelatedWork W2325511946 @default.
- W128408443 hasRelatedWork W2350619710 @default.
- W128408443 hasRelatedWork W2373216248 @default.
- W128408443 hasRelatedWork W2381035939 @default.
- W128408443 hasRelatedWork W2472281194 @default.
- W128408443 hasRelatedWork W2472792831 @default.
- W128408443 hasRelatedWork W2804605181 @default.
- W128408443 hasRelatedWork W2885908482 @default.
- W128408443 hasRelatedWork W3048060013 @default.
- W128408443 hasRelatedWork W3139877264 @default.
- W128408443 hasRelatedWork W3203386397 @default.
- W128408443 isParatext "false" @default.
- W128408443 isRetracted "false" @default.
- W128408443 magId "128408443" @default.
- W128408443 workType "article" @default.