Matches in SemOpenAlex for { <https://semopenalex.org/work/W1289871> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W1289871 endingPage "2" @default.
- W1289871 startingPage "1" @default.
- W1289871 abstract "In this communication, we propose the design of a broadband reflectarray which resort to a nonconventional shape radiating element to assure a large gain bandwidth. The element shape presents sufficient degrees of freedom to compensate the frequency variation of the differential spatial phase delay even when single-layer printed patches are employed. In this way it is possible to manufacture planar reflector with a reduced cost, that are ideal candidates for the realization of portable and deployable reflectarrays. 1. Broadband Element for High-Gain Single-Layer Printed Reflectarray Antenna Reflectarrays (RAs) present advantages as high gain, narrow beam with low side lobes, lightweight and smaller volume with respect to other types of antennas with comparable electromagnetic features, but also some drawbacks, the main of which is probably the poor bandwidth, due to two different reasons: the intrinsically poor bandwidth of printed radiated elements, usually no larger than the 3-6%, and the frequency dependence of the phase delay of the incident field. In particular this second aspect is quite critical and becomes dominant in large RAs [1]-[2], since it requires that the RA elements should be able to compensate different phase delays at different operating frequencies. A possible way to enhance the RA bandwidth is that of adopting one of the techniques usually employed for printed antennas and arrays, i.e., using radiating elements that consist in two or more stacked printed single radiators. Examples of reflectarrays that employ stacked printed elements are shown in [3]-[5]. The resulting RA elements are quite complex, consisting in several dielectric layers and patches placed at the interface among the substrate layers: this increases the complexity of the whole reflectarray not only from the point of view of its design, but also from that of its manufacturing (higher costs), and of its handiness. For these reasons it would be better to use single layer RA also in applications in which a large bandwidth is required. Results on the attempt of design a single layer RA with a bandwidth greater than 10% are shown in [6], [7] Here, we propose an alternative solution, in which the RA elements are single-layer printed patches of non conventional shape (original Malta Cross and modified one (Fig.1)). They present sufficient degrees of freedom to compensate the frequency variation of the differential spatial phase delay, allowing us to overcome the intrinsic RA narrow bandwidth limitation. Numerical analyses of structures designed using these elements show that it is possible to design high gain Ku band RAs with a bandwidth of more than 17% (i.e., working on the frequency interval 10.7-12.7 GHz), and with double polarization. Fig. 1 Original Malta Cross and modified Malta Cross In order to validate these numerical results, a medium-size (about 16λ × 16λ at the central frequency of 11.7 GHz) RA has been designed and manufactured. In this particular case only two degree of freedom, i.e. the element size and the slot length of the modified Malta Cross have been used to provide the require phase delay in the considered frequency band. Moreover, in order to consider the worst situation, the feeding of this RA is off-set. Preliminary results on the measurements of this prototype (reported in [8]) shown that it guarantees a 1 dB bandwidth of the order of the 15 % for the worst polarization and an aperture efficiency of the 62 % at the central frequency. 2 L1" @default.
- W1289871 created "2016-06-24" @default.
- W1289871 creator A5007787391 @default.
- W1289871 creator A5010741244 @default.
- W1289871 creator A5051733965 @default.
- W1289871 creator A5058511127 @default.
- W1289871 creator A5067497248 @default.
- W1289871 date "2008-01-01" @default.
- W1289871 modified "2023-09-23" @default.
- W1289871 title "Broadband printed reflectarray antenna" @default.
- W1289871 cites W1996605908 @default.
- W1289871 cites W2083562751 @default.
- W1289871 cites W2088253329 @default.
- W1289871 cites W2093974024 @default.
- W1289871 cites W2094205657 @default.
- W1289871 cites W2101223664 @default.
- W1289871 cites W2108370326 @default.
- W1289871 cites W2134106113 @default.
- W1289871 hasPublicationYear "2008" @default.
- W1289871 type Work @default.
- W1289871 sameAs 1289871 @default.
- W1289871 citedByCount "1" @default.
- W1289871 countsByYear W12898712015 @default.
- W1289871 crossrefType "journal-article" @default.
- W1289871 hasAuthorship W1289871A5007787391 @default.
- W1289871 hasAuthorship W1289871A5010741244 @default.
- W1289871 hasAuthorship W1289871A5051733965 @default.
- W1289871 hasAuthorship W1289871A5058511127 @default.
- W1289871 hasAuthorship W1289871A5067497248 @default.
- W1289871 hasConcept C119599485 @default.
- W1289871 hasConcept C120665830 @default.
- W1289871 hasConcept C120793396 @default.
- W1289871 hasConcept C121332964 @default.
- W1289871 hasConcept C121684516 @default.
- W1289871 hasConcept C127413603 @default.
- W1289871 hasConcept C134786449 @default.
- W1289871 hasConcept C24326235 @default.
- W1289871 hasConcept C24890656 @default.
- W1289871 hasConcept C2776257435 @default.
- W1289871 hasConcept C2778415886 @default.
- W1289871 hasConcept C2982854487 @default.
- W1289871 hasConcept C41008148 @default.
- W1289871 hasConcept C509933004 @default.
- W1289871 hasConcept C61829901 @default.
- W1289871 hasConcept C76155785 @default.
- W1289871 hasConceptScore W1289871C119599485 @default.
- W1289871 hasConceptScore W1289871C120665830 @default.
- W1289871 hasConceptScore W1289871C120793396 @default.
- W1289871 hasConceptScore W1289871C121332964 @default.
- W1289871 hasConceptScore W1289871C121684516 @default.
- W1289871 hasConceptScore W1289871C127413603 @default.
- W1289871 hasConceptScore W1289871C134786449 @default.
- W1289871 hasConceptScore W1289871C24326235 @default.
- W1289871 hasConceptScore W1289871C24890656 @default.
- W1289871 hasConceptScore W1289871C2776257435 @default.
- W1289871 hasConceptScore W1289871C2778415886 @default.
- W1289871 hasConceptScore W1289871C2982854487 @default.
- W1289871 hasConceptScore W1289871C41008148 @default.
- W1289871 hasConceptScore W1289871C509933004 @default.
- W1289871 hasConceptScore W1289871C61829901 @default.
- W1289871 hasConceptScore W1289871C76155785 @default.
- W1289871 hasOpenAccess W1289871 @default.
- W1289871 hasRelatedWork W114425519 @default.
- W1289871 hasRelatedWork W1490414534 @default.
- W1289871 hasRelatedWork W1586385313 @default.
- W1289871 hasRelatedWork W2133183027 @default.
- W1289871 hasRelatedWork W2186967101 @default.
- W1289871 hasRelatedWork W2469871984 @default.
- W1289871 hasRelatedWork W2533994384 @default.
- W1289871 hasRelatedWork W2554574710 @default.
- W1289871 hasRelatedWork W2607841072 @default.
- W1289871 hasRelatedWork W2769584913 @default.
- W1289871 hasRelatedWork W2799517290 @default.
- W1289871 hasRelatedWork W2989724082 @default.
- W1289871 hasRelatedWork W3003378231 @default.
- W1289871 hasRelatedWork W3015675739 @default.
- W1289871 hasRelatedWork W3041464294 @default.
- W1289871 hasRelatedWork W3094992610 @default.
- W1289871 hasRelatedWork W3145882681 @default.
- W1289871 hasRelatedWork W3163214731 @default.
- W1289871 hasRelatedWork W2188847942 @default.
- W1289871 hasRelatedWork W2464157046 @default.
- W1289871 isParatext "false" @default.
- W1289871 isRetracted "false" @default.
- W1289871 magId "1289871" @default.
- W1289871 workType "article" @default.