Matches in SemOpenAlex for { <https://semopenalex.org/work/W129346748> ?p ?o ?g. }
- W129346748 abstract "The possibility of identifying single nucleotide polymorphisms (SNPs) that would be useful for rapid bacterial typing was investigated. Neisseria meningitidis was the organism chosen for modelling the approach since informative SNPs could be found amongst the sequence data available for multi-locus sequence typing (MLST) at http://www.mlst.net.The hypothesis tested was that a small number of SNPs located within the seven gene fragments sequenced for MLST provide information equivalent to MLST. Preliminary investigations revealed that a small number of SNPs could be utilised to highly discriminate sequence types (STs) of clinical interest. Laboratory procedures demonstrated that SNP fingerprinting of N. meningitidis isolates is achievable. Further tests showed that laboratory identification of a defining SNP in the genome of isolates was to be a practical method of obtaining relevant typing information.Identification of the most discriminating SNPs amongst the ever-increasing amount of MLST sequence data summoned the need for computer-based assistance. Two methods of SNP selection devised by the author of this thesis were translated into computer-based algorithms by contributing team members. Software for two computer programs was produced. The algorithms facilitate the optimal selection of SNPs useful for (1) distinguishing specific STs and (2) differentiating non-specific STs. Current input information can be obtained from the MLST database and consequently the programs can be applied to any bacterial species for which MLST data have been entered.The two algorithms for the selection of SNPs were designed to serve contrasting purposes. The first of these was to determine the ST identity of isolates from an outbreak of disease. In this case, isolates would be tested for their membership to any of the STs known to be associated with disease. It was shown that one SNP per ST could distinguish each of four hyperinvasive STs of N. meningitidis from between 92.5% and 97.5% of all other STs. With two SNPs per ST, between 96.7% and 99.0% discrimination is achieved. The SNPs were selected from MLST loci with the assistance of the first algorithm which scores SNPs according to the number of base mismatches in a sequence alignment between an allele of an ST of interest and alleles belonging to all other STs at a specified locus. The second purpose was to determine whether or not isolates from different sources belong to the same ST, regardless of their actual ST identity. It was shown that with seven SNPs, four sample STs of N. meningitidis could, on average, be discriminated from 97.1% of all other STs. The SNPs were selected with the aid of the second algorithm which scores SNPs at MLST loci for the relative frequency of each nucleotide base in a sequence alignment as a measure of the extent of their polymorphism.A third algorithm for selecting SNPs has been discussed. By altering the method of scoring SNPs, it is possible to overcome the limitations inherent in the two algorithms that were utilised for finding SNPs. In addition, the third approach caters for finding SNPs that distinguish members of a complex from non-members." @default.
- W129346748 created "2016-06-24" @default.
- W129346748 creator A5025873690 @default.
- W129346748 date "2006-01-01" @default.
- W129346748 modified "2023-10-12" @default.
- W129346748 title "Computerised methods for selecting a small number of single nucleotide polymorphisms that enable bacterial strain discrimination" @default.
- W129346748 cites W119572487 @default.
- W129346748 cites W1504286842 @default.
- W129346748 cites W1509321259 @default.
- W129346748 cites W1527004061 @default.
- W129346748 cites W1542388765 @default.
- W129346748 cites W1825878074 @default.
- W129346748 cites W1900687908 @default.
- W129346748 cites W1970913116 @default.
- W129346748 cites W1973079579 @default.
- W129346748 cites W1975408746 @default.
- W129346748 cites W1977414953 @default.
- W129346748 cites W1981281266 @default.
- W129346748 cites W1992830293 @default.
- W129346748 cites W2000579653 @default.
- W129346748 cites W2005965677 @default.
- W129346748 cites W2011847079 @default.
- W129346748 cites W2016868116 @default.
- W129346748 cites W2020922309 @default.
- W129346748 cites W2029685401 @default.
- W129346748 cites W2032870665 @default.
- W129346748 cites W2033521025 @default.
- W129346748 cites W2034631514 @default.
- W129346748 cites W2044901980 @default.
- W129346748 cites W2047349473 @default.
- W129346748 cites W2049027350 @default.
- W129346748 cites W2049628926 @default.
- W129346748 cites W2057836361 @default.
- W129346748 cites W2065089860 @default.
- W129346748 cites W2065884491 @default.
- W129346748 cites W2068089434 @default.
- W129346748 cites W2073533707 @default.
- W129346748 cites W2080885816 @default.
- W129346748 cites W2085487526 @default.
- W129346748 cites W2087189381 @default.
- W129346748 cites W2095789339 @default.
- W129346748 cites W2096305028 @default.
- W129346748 cites W2097639650 @default.
- W129346748 cites W2097706568 @default.
- W129346748 cites W2098323713 @default.
- W129346748 cites W2098618245 @default.
- W129346748 cites W2099103467 @default.
- W129346748 cites W2100080502 @default.
- W129346748 cites W2104562710 @default.
- W129346748 cites W2107970882 @default.
- W129346748 cites W2108168500 @default.
- W129346748 cites W2111410812 @default.
- W129346748 cites W2113320035 @default.
- W129346748 cites W2113567599 @default.
- W129346748 cites W2118099497 @default.
- W129346748 cites W2118649904 @default.
- W129346748 cites W2119396174 @default.
- W129346748 cites W2122829385 @default.
- W129346748 cites W2123686037 @default.
- W129346748 cites W2127335580 @default.
- W129346748 cites W2136102878 @default.
- W129346748 cites W2138450775 @default.
- W129346748 cites W2139809552 @default.
- W129346748 cites W2142503351 @default.
- W129346748 cites W2145240901 @default.
- W129346748 cites W2146211405 @default.
- W129346748 cites W2146834175 @default.
- W129346748 cites W2149999449 @default.
- W129346748 cites W2151352005 @default.
- W129346748 cites W2151843268 @default.
- W129346748 cites W2151886886 @default.
- W129346748 cites W2152533086 @default.
- W129346748 cites W2154892242 @default.
- W129346748 cites W2155812349 @default.
- W129346748 cites W2157173994 @default.
- W129346748 cites W2159250218 @default.
- W129346748 cites W2160118626 @default.
- W129346748 cites W2161309656 @default.
- W129346748 cites W2165929287 @default.
- W129346748 cites W2168973227 @default.
- W129346748 cites W2170093840 @default.
- W129346748 cites W2170259176 @default.
- W129346748 cites W2170975639 @default.
- W129346748 cites W2276711971 @default.
- W129346748 cites W2394705380 @default.
- W129346748 cites W2409201546 @default.
- W129346748 cites W2412333841 @default.
- W129346748 cites W2413223290 @default.
- W129346748 cites W2433439691 @default.
- W129346748 cites W3024706283 @default.
- W129346748 cites W3080517846 @default.
- W129346748 cites W1707813480 @default.
- W129346748 cites W2432929078 @default.
- W129346748 hasPublicationYear "2006" @default.
- W129346748 type Work @default.
- W129346748 sameAs 129346748 @default.
- W129346748 citedByCount "0" @default.
- W129346748 crossrefType "dissertation" @default.
- W129346748 hasAuthorship W129346748A5025873690 @default.
- W129346748 hasConcept C104317684 @default.