Matches in SemOpenAlex for { <https://semopenalex.org/work/W129379251> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W129379251 endingPage "1075" @default.
- W129379251 startingPage "1073" @default.
- W129379251 abstract "Stochastic exp-concave optimization is an important primitive in machine learning that captures several fundamental problems, including linear regression, logistic regression and more. The exp-concavity property allows for fast convergence rates, as compared to general stochastic optimization. However, current algorithms that attain such rates scale poorly with the dimension n and run in time O(n), even on very simple instances of the problem. The question we pose is whether it is possible to obtain fast rates for exp-concave functions using more computationally-efficient algorithms. Consider the problem of minimizing a convex function F over a convex set K ⊆ Rn where our only access to F is via a stochastic gradient oracle, that given a point x ∈ K returns a random vector ĝx for which E[ĝx] = ∇F (x). We make the following assumptions: (i) F is α-exp-concave and twice differentiable; that is, if gx = ∇F (x) and Hx = ∇2F (x) are the gradient and Hessian at some point x ∈ K, then Hx α gxg x . (ii) The gradient oracle has ‖ĝx‖2 ≤ G with probability 1 at any point x ∈ K, for some positive constant G. (iii) For concreteness, we assume the case that K = {x ∈ Rn : ‖x‖2 ≤ 1} is the Euclidean unit ball. An important special case is when F is given as an expectation F (x) = Ez∼D[f(x, z)] over an unknown distribution D of parameters z, where for every fixed parameter value z the function f(x, z) is α-exp-concave with gradients bounded by G. Indeed, this implies that F is itself α-exp-concave (see Appendix A). Given the ability to sample from the distribution D, we can implement a gradient oracle by setting ĝx = ∇f(x, z) where z ∼ D. For example, f(x, (a, b)) = 1 2(a >x − b)2 corresponds to linear regression. In a learning scenario it is reasonable to assume that f(x, (a, b)) ≤ M with probability 1 for some constant M , which also guarantees that f is exp-concave with α = 1/M . Additional examples include the log-loss f(x, a) = − log(a>x) and the logistic loss f(x, (a, b)) = log(1+exp(−b ·a>x)), both are exp-concave provided that a, b and x are properly bounded. The goal of an optimization algorithm, given a target accuracy e, is to compute a point x for which F (x)−minx∈K F (x) ≤ e (either in expectation, or with high probability). The standard approach to general stochastic optimization, namely the Stochastic Gradient Descent algorithm, computes an e-approximate solution using O(1/e2) oracle queries. Since each iteration runs in linear time1, the total runtime of this approach is O(n/e2). 1. We assume that an oracle query runs in time O(1)." @default.
- W129379251 created "2016-06-24" @default.
- W129379251 creator A5053775980 @default.
- W129379251 date "2013-06-13" @default.
- W129379251 modified "2023-09-26" @default.
- W129379251 title "Open Problem: Fast Stochastic Exp-Concave Optimization" @default.
- W129379251 cites W2129160848 @default.
- W129379251 cites W2145630740 @default.
- W129379251 cites W2404385938 @default.
- W129379251 hasPublicationYear "2013" @default.
- W129379251 type Work @default.
- W129379251 sameAs 129379251 @default.
- W129379251 citedByCount "12" @default.
- W129379251 countsByYear W1293792512014 @default.
- W129379251 countsByYear W1293792512015 @default.
- W129379251 countsByYear W1293792512016 @default.
- W129379251 countsByYear W1293792512017 @default.
- W129379251 countsByYear W1293792512021 @default.
- W129379251 countsByYear W1293792512022 @default.
- W129379251 crossrefType "proceedings-article" @default.
- W129379251 hasAuthorship W129379251A5053775980 @default.
- W129379251 hasConcept C112680207 @default.
- W129379251 hasConcept C114614502 @default.
- W129379251 hasConcept C118615104 @default.
- W129379251 hasConcept C122041747 @default.
- W129379251 hasConcept C126255220 @default.
- W129379251 hasConcept C134306372 @default.
- W129379251 hasConcept C145446738 @default.
- W129379251 hasConcept C191948623 @default.
- W129379251 hasConcept C194387892 @default.
- W129379251 hasConcept C202615002 @default.
- W129379251 hasConcept C22324862 @default.
- W129379251 hasConcept C2524010 @default.
- W129379251 hasConcept C33676613 @default.
- W129379251 hasConcept C33923547 @default.
- W129379251 hasConcept C34388435 @default.
- W129379251 hasConcept C66690126 @default.
- W129379251 hasConceptScore W129379251C112680207 @default.
- W129379251 hasConceptScore W129379251C114614502 @default.
- W129379251 hasConceptScore W129379251C118615104 @default.
- W129379251 hasConceptScore W129379251C122041747 @default.
- W129379251 hasConceptScore W129379251C126255220 @default.
- W129379251 hasConceptScore W129379251C134306372 @default.
- W129379251 hasConceptScore W129379251C145446738 @default.
- W129379251 hasConceptScore W129379251C191948623 @default.
- W129379251 hasConceptScore W129379251C194387892 @default.
- W129379251 hasConceptScore W129379251C202615002 @default.
- W129379251 hasConceptScore W129379251C22324862 @default.
- W129379251 hasConceptScore W129379251C2524010 @default.
- W129379251 hasConceptScore W129379251C33676613 @default.
- W129379251 hasConceptScore W129379251C33923547 @default.
- W129379251 hasConceptScore W129379251C34388435 @default.
- W129379251 hasConceptScore W129379251C66690126 @default.
- W129379251 hasLocation W1293792511 @default.
- W129379251 hasOpenAccess W129379251 @default.
- W129379251 hasPrimaryLocation W1293792511 @default.
- W129379251 hasRelatedWork W1570963478 @default.
- W129379251 hasRelatedWork W168482920 @default.
- W129379251 hasRelatedWork W1770103563 @default.
- W129379251 hasRelatedWork W1854971760 @default.
- W129379251 hasRelatedWork W1951567707 @default.
- W129379251 hasRelatedWork W2017007913 @default.
- W129379251 hasRelatedWork W2073443629 @default.
- W129379251 hasRelatedWork W2083459869 @default.
- W129379251 hasRelatedWork W2129160848 @default.
- W129379251 hasRelatedWork W2148825261 @default.
- W129379251 hasRelatedWork W2256212528 @default.
- W129379251 hasRelatedWork W2949903024 @default.
- W129379251 hasRelatedWork W2950419925 @default.
- W129379251 hasRelatedWork W2951558912 @default.
- W129379251 hasRelatedWork W2963153443 @default.
- W129379251 hasRelatedWork W2963945345 @default.
- W129379251 hasRelatedWork W3012188615 @default.
- W129379251 hasRelatedWork W3102622251 @default.
- W129379251 hasRelatedWork W3135698628 @default.
- W129379251 hasRelatedWork W3142356237 @default.
- W129379251 isParatext "false" @default.
- W129379251 isRetracted "false" @default.
- W129379251 magId "129379251" @default.
- W129379251 workType "article" @default.