Matches in SemOpenAlex for { <https://semopenalex.org/work/W13037105> ?p ?o ?g. }
- W13037105 abstract "Many methods have been developed and studied to detect damage through the change of dynamic response of a structure. Due to its capability to recognize pattern and to correlate non-linear and non-unique problem, Artificial Neural Networks (ANN) have received increasing attention for use in detecting damage in structures based on vibration modal parameters. Most successful works reported in the application of ANN for damage detection are limited to numerical examples and small controlled experimental examples only. This is because of the two main constraints for its practical application in detecting damage in real structures. They are: 1) the inevitable existence of uncertainties in vibration measurement data and finite element modeling of the structure, which may lead to erroneous prediction of structural conditions; and 2) enormous computational effort required to reliably train an ANN model when it involves structures with many degrees of freedom. Therefore, most applications of ANN in damage detection are limited to structure systems with a small number of degrees of freedom and quite significant damage levels.In this thesis, a probabilistic ANN model is proposed to include into consideration the uncertainties in finite element model and measured data. Rossenblueth’s point estimate method is used to reduce the calculations in training and testing the probabilistic ANN model. The accuracy of the probabilistic model is verified by Monte Carlo simulations. Using the probabilistic ANN model, the statistics of the stiffness parameters can be predicted which are used to calculate the probability of damage existence (PDE) in each structural member. The reliability and efficiency of this method is demonstrated using both numerical and experimental examples. In addition, a parametric study is carried out to investigate the sensitivity of the proposed method to different damage levels and to different uncertainty levels.iiAs an ANN model requires enormous computational effort in training the ANN model when the number of degrees of freedom is relatively large, a substructuring approach employing multi-stage ANN is proposed to tackle the problem. Through this method, a structure is divided to several substructures and each substructure is assessed seperately with independently trained ANN model for the substructure. Once the damaged substructures are identified, second-stage ANN models are trained for these substructures to identify the damage locations and severities of the structural element in the substructures. Both the numerical and experimental examples are used to demonstrate the probabilistic multi-stage ANN methods. It is found that this substructuring ANN approach greatly reduces the computational effort while increasing the damage detectability because fine element mesh can be used. It is also found that the probabilistic model gives better damage identification than the deterministic approach. A sensitivity analysis is also conducted to investigate the effect of substructure size, support condition and different uncertainty levels on the damage detectability of the proposed method. The results demonstrated that the detectibility level of the proposed method is independent of the structure type, but dependent on the boundary condition, substructure size and uncertainty level." @default.
- W13037105 created "2016-06-24" @default.
- W13037105 creator A5029426102 @default.
- W13037105 creator A5049357575 @default.
- W13037105 creator A5052041336 @default.
- W13037105 creator A5069065116 @default.
- W13037105 date "2011-08-13" @default.
- W13037105 modified "2023-09-28" @default.
- W13037105 title "A study on uncertainties in vibration based damage detection for reinforced concrete bridge" @default.
- W13037105 hasPublicationYear "2011" @default.
- W13037105 type Work @default.
- W13037105 sameAs 13037105 @default.
- W13037105 citedByCount "0" @default.
- W13037105 crossrefType "journal-article" @default.
- W13037105 hasAuthorship W13037105A5029426102 @default.
- W13037105 hasAuthorship W13037105A5049357575 @default.
- W13037105 hasAuthorship W13037105A5052041336 @default.
- W13037105 hasAuthorship W13037105A5069065116 @default.
- W13037105 hasConcept C100776233 @default.
- W13037105 hasConcept C105795698 @default.
- W13037105 hasConcept C11413529 @default.
- W13037105 hasConcept C114289077 @default.
- W13037105 hasConcept C119857082 @default.
- W13037105 hasConcept C121332964 @default.
- W13037105 hasConcept C126322002 @default.
- W13037105 hasConcept C127413603 @default.
- W13037105 hasConcept C135628077 @default.
- W13037105 hasConcept C154945302 @default.
- W13037105 hasConcept C163258240 @default.
- W13037105 hasConcept C185592680 @default.
- W13037105 hasConcept C188027245 @default.
- W13037105 hasConcept C19499675 @default.
- W13037105 hasConcept C198394728 @default.
- W13037105 hasConcept C208081375 @default.
- W13037105 hasConcept C2776247918 @default.
- W13037105 hasConcept C2779372316 @default.
- W13037105 hasConcept C32230216 @default.
- W13037105 hasConcept C33923547 @default.
- W13037105 hasConcept C41008148 @default.
- W13037105 hasConcept C43214815 @default.
- W13037105 hasConcept C49937458 @default.
- W13037105 hasConcept C50644808 @default.
- W13037105 hasConcept C62520636 @default.
- W13037105 hasConcept C66938386 @default.
- W13037105 hasConcept C71139939 @default.
- W13037105 hasConcept C71924100 @default.
- W13037105 hasConceptScore W13037105C100776233 @default.
- W13037105 hasConceptScore W13037105C105795698 @default.
- W13037105 hasConceptScore W13037105C11413529 @default.
- W13037105 hasConceptScore W13037105C114289077 @default.
- W13037105 hasConceptScore W13037105C119857082 @default.
- W13037105 hasConceptScore W13037105C121332964 @default.
- W13037105 hasConceptScore W13037105C126322002 @default.
- W13037105 hasConceptScore W13037105C127413603 @default.
- W13037105 hasConceptScore W13037105C135628077 @default.
- W13037105 hasConceptScore W13037105C154945302 @default.
- W13037105 hasConceptScore W13037105C163258240 @default.
- W13037105 hasConceptScore W13037105C185592680 @default.
- W13037105 hasConceptScore W13037105C188027245 @default.
- W13037105 hasConceptScore W13037105C19499675 @default.
- W13037105 hasConceptScore W13037105C198394728 @default.
- W13037105 hasConceptScore W13037105C208081375 @default.
- W13037105 hasConceptScore W13037105C2776247918 @default.
- W13037105 hasConceptScore W13037105C2779372316 @default.
- W13037105 hasConceptScore W13037105C32230216 @default.
- W13037105 hasConceptScore W13037105C33923547 @default.
- W13037105 hasConceptScore W13037105C41008148 @default.
- W13037105 hasConceptScore W13037105C43214815 @default.
- W13037105 hasConceptScore W13037105C49937458 @default.
- W13037105 hasConceptScore W13037105C50644808 @default.
- W13037105 hasConceptScore W13037105C62520636 @default.
- W13037105 hasConceptScore W13037105C66938386 @default.
- W13037105 hasConceptScore W13037105C71139939 @default.
- W13037105 hasConceptScore W13037105C71924100 @default.
- W13037105 hasLocation W130371051 @default.
- W13037105 hasOpenAccess W13037105 @default.
- W13037105 hasPrimaryLocation W130371051 @default.
- W13037105 hasRelatedWork W1970590690 @default.
- W13037105 hasRelatedWork W2003005371 @default.
- W13037105 hasRelatedWork W2052103100 @default.
- W13037105 hasRelatedWork W2069720869 @default.
- W13037105 hasRelatedWork W2094363207 @default.
- W13037105 hasRelatedWork W2289438788 @default.
- W13037105 hasRelatedWork W2297211715 @default.
- W13037105 hasRelatedWork W2312921059 @default.
- W13037105 hasRelatedWork W2331806743 @default.
- W13037105 hasRelatedWork W2556429591 @default.
- W13037105 hasRelatedWork W2736829710 @default.
- W13037105 hasRelatedWork W2739508884 @default.
- W13037105 hasRelatedWork W2896211964 @default.
- W13037105 hasRelatedWork W2963409592 @default.
- W13037105 hasRelatedWork W2970073247 @default.
- W13037105 hasRelatedWork W3015141831 @default.
- W13037105 hasRelatedWork W3081065019 @default.
- W13037105 hasRelatedWork W3097142707 @default.
- W13037105 hasRelatedWork W3159856144 @default.
- W13037105 hasRelatedWork W3203440379 @default.
- W13037105 isParatext "false" @default.
- W13037105 isRetracted "false" @default.
- W13037105 magId "13037105" @default.