Matches in SemOpenAlex for { <https://semopenalex.org/work/W130653142> ?p ?o ?g. }
- W130653142 endingPage "494" @default.
- W130653142 startingPage "486" @default.
- W130653142 abstract "Our objective is to speed up non-linear SVM prediction while maintaining classification accuracy above an acceptable limit. We generalize Localized Multiple Kernel Learning so as to learn a tree-based primal feature embedding which is high dimensional and sparse. Primal based classification decouples prediction costs from the number of support vectors and our tree-structured features efficiently encode non-linearities while speeding up prediction exponentially over the state-of-the-art. We develop routines for optimizing over the space of tree-structured features and efficiently scale to problems with more than half a million training points. Experiments on benchmark data sets reveal that our formulation can reduce prediction costs by more than three orders of magnitude in some cases with a moderate sacrifice in classification accuracy as compared to RBF-SVMs. Furthermore, our formulation leads to better classification accuracies over leading methods." @default.
- W130653142 created "2016-06-24" @default.
- W130653142 creator A5051880496 @default.
- W130653142 creator A5054103644 @default.
- W130653142 creator A5072713291 @default.
- W130653142 creator A5090997781 @default.
- W130653142 date "2013-06-16" @default.
- W130653142 modified "2023-09-23" @default.
- W130653142 title "Local Deep Kernel Learning for Efficient Non-linear SVM Prediction" @default.
- W130653142 cites W15962362 @default.
- W130653142 cites W1646506067 @default.
- W130653142 cites W1914219707 @default.
- W130653142 cites W1984274769 @default.
- W130653142 cites W1987435156 @default.
- W130653142 cites W1999693420 @default.
- W130653142 cites W2048041841 @default.
- W130653142 cites W2093843821 @default.
- W130653142 cites W2101234009 @default.
- W130653142 cites W2104472920 @default.
- W130653142 cites W2104867159 @default.
- W130653142 cites W2105867876 @default.
- W130653142 cites W2106004777 @default.
- W130653142 cites W2107791152 @default.
- W130653142 cites W2109235804 @default.
- W130653142 cites W2112545207 @default.
- W130653142 cites W2116589987 @default.
- W130653142 cites W2120137102 @default.
- W130653142 cites W2123395972 @default.
- W130653142 cites W2128035438 @default.
- W130653142 cites W2133282586 @default.
- W130653142 cites W2134778014 @default.
- W130653142 cites W2137285073 @default.
- W130653142 cites W2139451965 @default.
- W130653142 cites W2144902422 @default.
- W130653142 cites W2145295623 @default.
- W130653142 cites W2146722014 @default.
- W130653142 cites W2147854592 @default.
- W130653142 cites W2154462399 @default.
- W130653142 cites W2155319834 @default.
- W130653142 cites W2158001550 @default.
- W130653142 cites W2164535072 @default.
- W130653142 cites W2165966284 @default.
- W130653142 cites W2167608136 @default.
- W130653142 cites W2170356051 @default.
- W130653142 cites W2189508540 @default.
- W130653142 cites W2203936607 @default.
- W130653142 cites W2951654630 @default.
- W130653142 cites W2963755879 @default.
- W130653142 cites W71452225 @default.
- W130653142 hasPublicationYear "2013" @default.
- W130653142 type Work @default.
- W130653142 sameAs 130653142 @default.
- W130653142 citedByCount "38" @default.
- W130653142 countsByYear W1306531422014 @default.
- W130653142 countsByYear W1306531422015 @default.
- W130653142 countsByYear W1306531422016 @default.
- W130653142 countsByYear W1306531422017 @default.
- W130653142 countsByYear W1306531422018 @default.
- W130653142 countsByYear W1306531422019 @default.
- W130653142 countsByYear W1306531422020 @default.
- W130653142 countsByYear W1306531422021 @default.
- W130653142 crossrefType "proceedings-article" @default.
- W130653142 hasAuthorship W130653142A5051880496 @default.
- W130653142 hasAuthorship W130653142A5054103644 @default.
- W130653142 hasAuthorship W130653142A5072713291 @default.
- W130653142 hasAuthorship W130653142A5090997781 @default.
- W130653142 hasConcept C113174947 @default.
- W130653142 hasConcept C114614502 @default.
- W130653142 hasConcept C119857082 @default.
- W130653142 hasConcept C122280245 @default.
- W130653142 hasConcept C12267149 @default.
- W130653142 hasConcept C13280743 @default.
- W130653142 hasConcept C134306372 @default.
- W130653142 hasConcept C138885662 @default.
- W130653142 hasConcept C151201525 @default.
- W130653142 hasConcept C153180895 @default.
- W130653142 hasConcept C154945302 @default.
- W130653142 hasConcept C185798385 @default.
- W130653142 hasConcept C205649164 @default.
- W130653142 hasConcept C2776401178 @default.
- W130653142 hasConcept C33923547 @default.
- W130653142 hasConcept C41008148 @default.
- W130653142 hasConcept C41608201 @default.
- W130653142 hasConcept C41895202 @default.
- W130653142 hasConcept C74193536 @default.
- W130653142 hasConcept C83665646 @default.
- W130653142 hasConceptScore W130653142C113174947 @default.
- W130653142 hasConceptScore W130653142C114614502 @default.
- W130653142 hasConceptScore W130653142C119857082 @default.
- W130653142 hasConceptScore W130653142C122280245 @default.
- W130653142 hasConceptScore W130653142C12267149 @default.
- W130653142 hasConceptScore W130653142C13280743 @default.
- W130653142 hasConceptScore W130653142C134306372 @default.
- W130653142 hasConceptScore W130653142C138885662 @default.
- W130653142 hasConceptScore W130653142C151201525 @default.
- W130653142 hasConceptScore W130653142C153180895 @default.
- W130653142 hasConceptScore W130653142C154945302 @default.
- W130653142 hasConceptScore W130653142C185798385 @default.