Matches in SemOpenAlex for { <https://semopenalex.org/work/W130792323> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W130792323 endingPage "43" @default.
- W130792323 startingPage "35" @default.
- W130792323 abstract "The feature type (FT) chosen for extraction from the text and presented to the classification algorithm (CAL) is one of the factors affecting text classification (TC) accuracy. Character N-grams, word roots, word stems, and single words have been used as features for Arabic TC (ATC). A survey of current literature shows that no prior studies have been conducted on the effect of using word N-grams (N consecutive words) on ATC accuracy. Consequently, we have conducted 576 experiments using four FTs (single words, 2-grams, 3-grams, and 4-grams), four feature selection methods (document frequency (DF), chi-squared, information gain, and Galavotti, Sebastiani, Simi) with four thresholds for numbers of features (50, 100, 150, and 200), three data representation schemas (Boolean, term frequency-inversed document frequency, and lookup table convolution), and three CALs (naive Bayes (NB), k-nearest neighbor (KNN), and support vector machine (SVM)). Our results show that the use of single words as a feature provides greater classification accuracy (CA) for ATC compared to N-grams. Moreover, CA decreases by 17% on average when the number of N-grams increases. The data also show that the SVM CAL provides greater CA than NB and KNN; however, the best CA for 2-grams, 3-grams, and 4-grams is achieved when the NB CAL is used with Boolean representation and the number of features is 200." @default.
- W130792323 created "2016-06-24" @default.
- W130792323 creator A5005097100 @default.
- W130792323 creator A5083119666 @default.
- W130792323 creator A5088328008 @default.
- W130792323 date "2015-01-01" @default.
- W130792323 modified "2023-10-05" @default.
- W130792323 title "Using Word N-Grams as Features in Arabic Text Classification" @default.
- W130792323 cites W1980229662 @default.
- W130792323 cites W2011064408 @default.
- W130792323 cites W2036353774 @default.
- W130792323 cites W2039240145 @default.
- W130792323 cites W2052919187 @default.
- W130792323 cites W2087658093 @default.
- W130792323 cites W2118020653 @default.
- W130792323 cites W2135514714 @default.
- W130792323 cites W2963486821 @default.
- W130792323 cites W4256133489 @default.
- W130792323 doi "https://doi.org/10.1007/978-3-319-10389-1_3" @default.
- W130792323 hasPublicationYear "2015" @default.
- W130792323 type Work @default.
- W130792323 sameAs 130792323 @default.
- W130792323 citedByCount "7" @default.
- W130792323 countsByYear W1307923232017 @default.
- W130792323 countsByYear W1307923232018 @default.
- W130792323 countsByYear W1307923232019 @default.
- W130792323 countsByYear W1307923232022 @default.
- W130792323 countsByYear W1307923232023 @default.
- W130792323 crossrefType "book-chapter" @default.
- W130792323 hasAuthorship W130792323A5005097100 @default.
- W130792323 hasAuthorship W130792323A5083119666 @default.
- W130792323 hasAuthorship W130792323A5088328008 @default.
- W130792323 hasConcept C12267149 @default.
- W130792323 hasConcept C138885662 @default.
- W130792323 hasConcept C153180895 @default.
- W130792323 hasConcept C154945302 @default.
- W130792323 hasConcept C204321447 @default.
- W130792323 hasConcept C2524010 @default.
- W130792323 hasConcept C2776401178 @default.
- W130792323 hasConcept C2780861071 @default.
- W130792323 hasConcept C33923547 @default.
- W130792323 hasConcept C41008148 @default.
- W130792323 hasConcept C41895202 @default.
- W130792323 hasConcept C52001869 @default.
- W130792323 hasConcept C90805587 @default.
- W130792323 hasConceptScore W130792323C12267149 @default.
- W130792323 hasConceptScore W130792323C138885662 @default.
- W130792323 hasConceptScore W130792323C153180895 @default.
- W130792323 hasConceptScore W130792323C154945302 @default.
- W130792323 hasConceptScore W130792323C204321447 @default.
- W130792323 hasConceptScore W130792323C2524010 @default.
- W130792323 hasConceptScore W130792323C2776401178 @default.
- W130792323 hasConceptScore W130792323C2780861071 @default.
- W130792323 hasConceptScore W130792323C33923547 @default.
- W130792323 hasConceptScore W130792323C41008148 @default.
- W130792323 hasConceptScore W130792323C41895202 @default.
- W130792323 hasConceptScore W130792323C52001869 @default.
- W130792323 hasConceptScore W130792323C90805587 @default.
- W130792323 hasLocation W1307923231 @default.
- W130792323 hasOpenAccess W130792323 @default.
- W130792323 hasPrimaryLocation W1307923231 @default.
- W130792323 hasRelatedWork W2041399278 @default.
- W130792323 hasRelatedWork W2056016498 @default.
- W130792323 hasRelatedWork W2136184105 @default.
- W130792323 hasRelatedWork W2336974148 @default.
- W130792323 hasRelatedWork W2389470892 @default.
- W130792323 hasRelatedWork W2773671478 @default.
- W130792323 hasRelatedWork W3013515612 @default.
- W130792323 hasRelatedWork W4293087713 @default.
- W130792323 hasRelatedWork W2187500075 @default.
- W130792323 hasRelatedWork W2345184372 @default.
- W130792323 isParatext "false" @default.
- W130792323 isRetracted "false" @default.
- W130792323 magId "130792323" @default.
- W130792323 workType "book-chapter" @default.