Matches in SemOpenAlex for { <https://semopenalex.org/work/W131468650> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W131468650 abstract "Previous chapter Next chapter Full AccessProceedings Proceedings of the 2009 SIAM International Conference on Data Mining (SDM)FEDRA: A Fast and Efficient Dimensionality Reduction AlgorithmPanagis Magdalinos, Christos Doulkeridis, and Michalis VazirgiannisPanagis Magdalinos, Christos Doulkeridis, and Michalis Vazirgiannispp.509 - 520Chapter DOI:https://doi.org/10.1137/1.9781611972795.44PDFBibTexSections ToolsAdd to favoritesExport CitationTrack CitationsEmail SectionsAboutAbstract Contemporary data-intensive applications generate large datasets of very high dimensionality. Data management in high-dimensional spaces presents problems, such as the degradation of query processing performance, a phenomenon also known as the curse of dimensionality. Dimensionality reduction (DR) tackles this problem, by efficiently embedding data from high dimensional to lower dimensional spaces. However, the large scale and dynamism of generated data calls for methods of low time and space complexity, features that are hardly combined in the majority of existing DR algorithms. Motivated by this fact, in this paper we propose FEDRA, a fast and efficient dimensionality reduction algorithm that uses a set of landmark points to project data to a lower dimensional Euclidean space. FEDRA is both faster and requires less memory than other comparable algorithms, without compromising the projection's quality. We theoretically assess the quality of the resulting projection and provide a bound for the error induced in pairwise distances. Furthermore, we present two extensions of FEDRA that improve the quality of the projection, suitable for applications that can tolerate higher processing costs. We prove the validity of our claims both theoretically and experimentally, by comparing our algorithm against prominent approaches, such as FastMap, LMDS, PCA, SVD and Random Projection. Previous chapter Next chapter RelatedDetails Published:2009ISBN:978-0-89871-682-5eISBN:978-1-61197-279-5 https://doi.org/10.1137/1.9781611972795Book Series Name:ProceedingsBook Code:PR133Book Pages:1-1244" @default.
- W131468650 created "2016-06-24" @default.
- W131468650 creator A5017760874 @default.
- W131468650 creator A5033084721 @default.
- W131468650 creator A5057695979 @default.
- W131468650 date "2009-04-30" @default.
- W131468650 modified "2023-09-23" @default.
- W131468650 title "FEDRA: A Fast and Efficient Dimensionality Reduction Algorithm" @default.
- W131468650 cites W1504817388 @default.
- W131468650 cites W1506845741 @default.
- W131468650 cites W1602102683 @default.
- W131468650 cites W1672197616 @default.
- W131468650 cites W2001141328 @default.
- W131468650 cites W2053171205 @default.
- W131468650 cites W2053186076 @default.
- W131468650 cites W2056930330 @default.
- W131468650 cites W2063392856 @default.
- W131468650 cites W2121853761 @default.
- W131468650 cites W2132921193 @default.
- W131468650 cites W2167081989 @default.
- W131468650 doi "https://doi.org/10.1137/1.9781611972795.44" @default.
- W131468650 hasPublicationYear "2009" @default.
- W131468650 type Work @default.
- W131468650 sameAs 131468650 @default.
- W131468650 citedByCount "2" @default.
- W131468650 countsByYear W1314686502013 @default.
- W131468650 crossrefType "proceedings-article" @default.
- W131468650 hasAuthorship W131468650A5017760874 @default.
- W131468650 hasAuthorship W131468650A5033084721 @default.
- W131468650 hasAuthorship W131468650A5057695979 @default.
- W131468650 hasConcept C111030470 @default.
- W131468650 hasConcept C111335779 @default.
- W131468650 hasConcept C11413529 @default.
- W131468650 hasConcept C124101348 @default.
- W131468650 hasConcept C154945302 @default.
- W131468650 hasConcept C2524010 @default.
- W131468650 hasConcept C2777036070 @default.
- W131468650 hasConcept C33923547 @default.
- W131468650 hasConcept C41008148 @default.
- W131468650 hasConcept C41608201 @default.
- W131468650 hasConcept C57493831 @default.
- W131468650 hasConcept C70518039 @default.
- W131468650 hasConceptScore W131468650C111030470 @default.
- W131468650 hasConceptScore W131468650C111335779 @default.
- W131468650 hasConceptScore W131468650C11413529 @default.
- W131468650 hasConceptScore W131468650C124101348 @default.
- W131468650 hasConceptScore W131468650C154945302 @default.
- W131468650 hasConceptScore W131468650C2524010 @default.
- W131468650 hasConceptScore W131468650C2777036070 @default.
- W131468650 hasConceptScore W131468650C33923547 @default.
- W131468650 hasConceptScore W131468650C41008148 @default.
- W131468650 hasConceptScore W131468650C41608201 @default.
- W131468650 hasConceptScore W131468650C57493831 @default.
- W131468650 hasConceptScore W131468650C70518039 @default.
- W131468650 hasLocation W1314686501 @default.
- W131468650 hasOpenAccess W131468650 @default.
- W131468650 hasPrimaryLocation W1314686501 @default.
- W131468650 hasRelatedWork W162023102 @default.
- W131468650 hasRelatedWork W2064168458 @default.
- W131468650 hasRelatedWork W2089497633 @default.
- W131468650 hasRelatedWork W2141406155 @default.
- W131468650 hasRelatedWork W2161722909 @default.
- W131468650 hasRelatedWork W2245231753 @default.
- W131468650 hasRelatedWork W2803952844 @default.
- W131468650 hasRelatedWork W3015962327 @default.
- W131468650 hasRelatedWork W3189024743 @default.
- W131468650 hasRelatedWork W2611813480 @default.
- W131468650 isParatext "false" @default.
- W131468650 isRetracted "false" @default.
- W131468650 magId "131468650" @default.
- W131468650 workType "article" @default.