Matches in SemOpenAlex for { <https://semopenalex.org/work/W132084433> ?p ?o ?g. }
- W132084433 abstract "The skin is an amazing elastic and relatively impermeable barrier that provides protective, perceptive and communication functions to the body. The stratum corneum is widely accepted as the barrier of the skin limiting the transport of molecules into and across the skin. It is evident that the transdermal permeation of drugs depend on a number of factors of which the physicochemical properties play the most prevalent role. The potential of using intact skin as the site of administration for dermatological preparations to elicit pharmacological action in the skin tissue has been well recognised. Transdermal drug delivery offers several advantages over oral and parenteral dosing. They include avoiding hepatic first pass metabolism, maintaining constant blood levels for longer periods of time, improving bioavailabiliv, decreasing the administered dose, adverse effects and gastrointestinal side effects, easy discontinuation in case of toxic effects and improved patient compliance. Optimal transport through the skin requires a drug to possess lipophilic as well as hydrophilic properties. Research has indicated that the ideal log P value for optimal transdermal permeation is between 1 and 2. Acetylsalicylic acid (aspirin) possesses anti-inflammatory, analgesic and antipyretic activity, and as an anti-inflammatory analgesic agent it is used in the treatment of musculoskeletal disorders, such as rheumatoid arthritis. Its use is limited to the relief of pain and inflammation, as it does not halt the progression of the pathological injuty caused to the tissue. Acetylsalicylic acid is also used in the treatment of fever, prevention of thromboembolic disorders, reducing the incidence of colon cancer and it delays the onset of Alzheimer's disease. The most common adverse effect of acetylsalicylic acid occurring with therapeutic doses is gastro-intestinal disturbances. The primary aim of this study was to determine the transderrnal penetration of acetylsalicylic acid and some of its derivatives and to establish a correlation, i f any, with selected physicochemical propetiis. The ten derivatives of acetylsalicylic acid were prepared by esterification of acetylsalicyloyl chloride with ten different alcohols. The structures of the products were confirmed by mass spectroscopy (MS), nuclear magnetic resonance spectroscopy (NMR), infrared spectroscopy (IR) and differential scanning calorimetry (DSC) for methyl acetylsalicylate. Experimental aqueous solubility and partition coefficients were determined for acetylsalicylic acid and its different derivatives at a pH of 4,5. In vitro penetration was measured through excised female human abdominal skin in diffusion cells. The prediction software Interactive Analysis (IA) was used to predict aqueous solubility, while prediction software IA, &,Win and ACD Labs were used to predict the log P values for each derivative. None of the predicted values correlated with the experimental values. The experimental aqueous solubilily, partition coefficient and transdermal flux values were determined for acetylsalicylic acid and its derivatives. The experimental aqueous solubilily of acetylsalicylic acid (6,56 mglml) was higher than that of the synthesised acetylsalicylate derivatives (ranging from 1,76 x lo3 to 3,32 mglml), and the partition coefficient of acetylsalicylic acid (-0,85) was lower than that of its derivatives (ranging from -0,25 to 1,954. There was thus a direct correlation between the aqueous solubility data and the partition coefficients. The experimental transdermal flux of acetylsalicylic acid (4733 pg/cm2/h) was much higher than that of its derivatives (ranging from 0,03 to 28,32 pg/cm2/h). With the ethyl derivative (28,32 pg/cm2/h) and the methyl derivative (10,06 pg/cm2/h) being the only derivatives with appreciable flux. Pentyl acetylsalicylate (0,03 pg/cm2/h) had the lowest flux. The higher flux values of acetylsalicylic acid and its methyl and ethyl derimtives might be due to the fact that it is more hydrophilic and had better aqueous solubilily, thus permeating through the proteins of the skin. Pentyl acetylsalicylate had a log P valueof 1,95, but had the lowest flux (0,03 pg/cm2/h), just proving once again that to cross the stratum corneum a drug should posses both hydrophilic and lipophilic properties. Tert-butyl acetylsalicylate had a flux (7,30 &cm2/h) lower than that of methyl and ethyl acetylsalicylate, but a higher flux than the other synthesised derivatives which could be due to its log P value being slightly greater than 1 and having an average aqueous solubility. The low transdermal permeation may also be attributed to the fact that at the pH (45) chosen for transdermal studies, acetylsalicylate was only 9,09 % unionised. A higher degreeof unionised species results in higher flux values. This study has confirmed that transdermal flux is dependent on several factors including optimum solubility, partitioning, diffusion and the degree of ionisation in the stratum corneum in addition to a suitable partition coefficient and high aqueous solubilily. The solution to the increased transdermal delivery of lipophilc drugs does not simply lie in producing a derivative with a higher aqueous solubilily and more ideal partition coefficient. Other means of increasing the transdermal permeation of lipophilic acetylsalicylic acid derivatives will have to be investigated in further studies." @default.
- W132084433 created "2016-06-24" @default.
- W132084433 creator A5009006716 @default.
- W132084433 date "2003-01-01" @default.
- W132084433 modified "2023-09-28" @default.
- W132084433 title "Synthesis and transdermal properties of acetylsalicylic acid derivates" @default.
- W132084433 cites W1232225731 @default.
- W132084433 cites W1481004620 @default.
- W132084433 cites W1483385029 @default.
- W132084433 cites W1485442945 @default.
- W132084433 cites W1486176279 @default.
- W132084433 cites W1495184715 @default.
- W132084433 cites W1501864094 @default.
- W132084433 cites W1516221483 @default.
- W132084433 cites W1540816832 @default.
- W132084433 cites W1543932617 @default.
- W132084433 cites W1561210178 @default.
- W132084433 cites W1587900694 @default.
- W132084433 cites W1740609526 @default.
- W132084433 cites W1865550052 @default.
- W132084433 cites W19281730 @default.
- W132084433 cites W1964003741 @default.
- W132084433 cites W1965549440 @default.
- W132084433 cites W1971726629 @default.
- W132084433 cites W1975986537 @default.
- W132084433 cites W1976654542 @default.
- W132084433 cites W1978937436 @default.
- W132084433 cites W1979355113 @default.
- W132084433 cites W1981893600 @default.
- W132084433 cites W1982733935 @default.
- W132084433 cites W1996891718 @default.
- W132084433 cites W1997488570 @default.
- W132084433 cites W1997490554 @default.
- W132084433 cites W1999610960 @default.
- W132084433 cites W2005786671 @default.
- W132084433 cites W2006567380 @default.
- W132084433 cites W2012199747 @default.
- W132084433 cites W2015490928 @default.
- W132084433 cites W2017213361 @default.
- W132084433 cites W2046338990 @default.
- W132084433 cites W2053535217 @default.
- W132084433 cites W2056050068 @default.
- W132084433 cites W2058009653 @default.
- W132084433 cites W2066569939 @default.
- W132084433 cites W2068637318 @default.
- W132084433 cites W2069912616 @default.
- W132084433 cites W2077535359 @default.
- W132084433 cites W2087806279 @default.
- W132084433 cites W2118984839 @default.
- W132084433 cites W2120329549 @default.
- W132084433 cites W2122767035 @default.
- W132084433 cites W2125471714 @default.
- W132084433 cites W2138492659 @default.
- W132084433 cites W2140482107 @default.
- W132084433 cites W2141095211 @default.
- W132084433 cites W2143122606 @default.
- W132084433 cites W2152548356 @default.
- W132084433 cites W2160754546 @default.
- W132084433 cites W2164845015 @default.
- W132084433 cites W230217728 @default.
- W132084433 cites W2329691318 @default.
- W132084433 cites W2415967480 @default.
- W132084433 cites W2471574434 @default.
- W132084433 cites W2481749686 @default.
- W132084433 cites W2498458466 @default.
- W132084433 cites W2895144870 @default.
- W132084433 cites W2902476610 @default.
- W132084433 cites W300669465 @default.
- W132084433 cites W3144932521 @default.
- W132084433 cites W3148603147 @default.
- W132084433 cites W620046791 @default.
- W132084433 cites W639218619 @default.
- W132084433 cites W644972487 @default.
- W132084433 cites W646125048 @default.
- W132084433 cites W2184079679 @default.
- W132084433 cites W2472790234 @default.
- W132084433 cites W2523037345 @default.
- W132084433 cites W2524972558 @default.
- W132084433 cites W2526939181 @default.
- W132084433 cites W2530123867 @default.
- W132084433 cites W3145754441 @default.
- W132084433 hasPublicationYear "2003" @default.
- W132084433 type Work @default.
- W132084433 sameAs 132084433 @default.
- W132084433 citedByCount "0" @default.
- W132084433 crossrefType "dissertation" @default.
- W132084433 hasAuthorship W132084433A5009006716 @default.
- W132084433 hasConcept C126322002 @default.
- W132084433 hasConcept C142724271 @default.
- W132084433 hasConcept C197934379 @default.
- W132084433 hasConcept C205679159 @default.
- W132084433 hasConcept C2777575956 @default.
- W132084433 hasConcept C2777628954 @default.
- W132084433 hasConcept C2778370115 @default.
- W132084433 hasConcept C2779252780 @default.
- W132084433 hasConcept C2780035454 @default.
- W132084433 hasConcept C2780820201 @default.
- W132084433 hasConcept C71924100 @default.
- W132084433 hasConcept C98274493 @default.
- W132084433 hasConceptScore W132084433C126322002 @default.