Matches in SemOpenAlex for { <https://semopenalex.org/work/W132340504> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W132340504 endingPage "482" @default.
- W132340504 startingPage "474" @default.
- W132340504 abstract "Neural Gas is a neural network algorithm for vector quantization. It has not arbitrary established network topology, instead its topology is changing dynamically during training process. Originally, the Neural Gas is an unsupervised algorithm. However, there are several extensions that enables Neural Gas to use the information about sample’s class. This significantly improves the accuracy of obtained clusters. Therefore, the Neural Gas was successfully used in classification problems. In this paper we present a novel method to learn the Neural Gas with fully and partially labelled data sets. Proposed method simulates the neuron’s hesitation between membership to the classes during the learning. Hesitation process is based on neuron’s class membership probability and Metropolis-Hastings algorithm. The proposed method was compared with state-of-art extensions of Neural Gas on supervised and semi-supervised classification tasks on benchmark data sets. Experimental results yield better or the same classification accuracy on both types of supervision." @default.
- W132340504 created "2016-06-24" @default.
- W132340504 creator A5081269529 @default.
- W132340504 creator A5087106476 @default.
- W132340504 date "2013-01-01" @default.
- W132340504 modified "2023-10-16" @default.
- W132340504 title "Hesitant Neural Gas for Supervised and Semi-supervised Classification" @default.
- W132340504 cites W1486158543 @default.
- W132340504 cites W1510616815 @default.
- W132340504 cites W1544367013 @default.
- W132340504 cites W1990517717 @default.
- W132340504 cites W1993972960 @default.
- W132340504 cites W1996437526 @default.
- W132340504 cites W2024060531 @default.
- W132340504 cites W2034527664 @default.
- W132340504 cites W2047286442 @default.
- W132340504 cites W2056760934 @default.
- W132340504 cites W21382975 @default.
- W132340504 cites W2138309709 @default.
- W132340504 cites W2160422165 @default.
- W132340504 cites W22184952 @default.
- W132340504 cites W92726264 @default.
- W132340504 doi "https://doi.org/10.1007/978-3-642-38658-9_42" @default.
- W132340504 hasPublicationYear "2013" @default.
- W132340504 type Work @default.
- W132340504 sameAs 132340504 @default.
- W132340504 citedByCount "0" @default.
- W132340504 crossrefType "book-chapter" @default.
- W132340504 hasAuthorship W132340504A5081269529 @default.
- W132340504 hasAuthorship W132340504A5087106476 @default.
- W132340504 hasBestOaLocation W1323405042 @default.
- W132340504 hasConcept C119857082 @default.
- W132340504 hasConcept C13280743 @default.
- W132340504 hasConcept C136389625 @default.
- W132340504 hasConcept C153180895 @default.
- W132340504 hasConcept C154945302 @default.
- W132340504 hasConcept C175202392 @default.
- W132340504 hasConcept C177973122 @default.
- W132340504 hasConcept C185798385 @default.
- W132340504 hasConcept C205649164 @default.
- W132340504 hasConcept C2777212361 @default.
- W132340504 hasConcept C40567965 @default.
- W132340504 hasConcept C41008148 @default.
- W132340504 hasConcept C50644808 @default.
- W132340504 hasConcept C90322556 @default.
- W132340504 hasConceptScore W132340504C119857082 @default.
- W132340504 hasConceptScore W132340504C13280743 @default.
- W132340504 hasConceptScore W132340504C136389625 @default.
- W132340504 hasConceptScore W132340504C153180895 @default.
- W132340504 hasConceptScore W132340504C154945302 @default.
- W132340504 hasConceptScore W132340504C175202392 @default.
- W132340504 hasConceptScore W132340504C177973122 @default.
- W132340504 hasConceptScore W132340504C185798385 @default.
- W132340504 hasConceptScore W132340504C205649164 @default.
- W132340504 hasConceptScore W132340504C2777212361 @default.
- W132340504 hasConceptScore W132340504C40567965 @default.
- W132340504 hasConceptScore W132340504C41008148 @default.
- W132340504 hasConceptScore W132340504C50644808 @default.
- W132340504 hasConceptScore W132340504C90322556 @default.
- W132340504 hasLocation W1323405041 @default.
- W132340504 hasLocation W1323405042 @default.
- W132340504 hasOpenAccess W132340504 @default.
- W132340504 hasPrimaryLocation W1323405041 @default.
- W132340504 hasRelatedWork W1921684954 @default.
- W132340504 hasRelatedWork W1986622592 @default.
- W132340504 hasRelatedWork W2133460316 @default.
- W132340504 hasRelatedWork W2168037897 @default.
- W132340504 hasRelatedWork W3089076581 @default.
- W132340504 hasRelatedWork W3195829100 @default.
- W132340504 hasRelatedWork W4317438634 @default.
- W132340504 hasRelatedWork W4321635597 @default.
- W132340504 hasRelatedWork W1629725936 @default.
- W132340504 hasRelatedWork W2183442073 @default.
- W132340504 isParatext "false" @default.
- W132340504 isRetracted "false" @default.
- W132340504 magId "132340504" @default.
- W132340504 workType "book-chapter" @default.