Matches in SemOpenAlex for { <https://semopenalex.org/work/W133053503> ?p ?o ?g. }
- W133053503 abstract "Color has been widely used in content-based image retrieval (CBIR) applications. In such applications the color properties of an image are usually characterized by the probability distribution of the colors in the image. A distance measure is then used to measure the (dis-)similarity between images based on the descriptions of their color distributions in order to quickly find relevant images. The development and investigation of statistical methods for robust representations of such distributions, the construction of distance measures between them and their applications in efficient retrieval, browsing, and structuring of very large image databases are the main contributions of the thesis. In particular we have addressed the following problems in CBIR.Firstly, different non-parametric density estimators are used to describe color information for CBIR applications. Kernel-based methods using nonorthogonal bases together with a Gram-Schmidt procedure and the application of the Fourier transform are introduced and compared to previously used histogram-based methods. Our experiments show that efficient use of kernel density estimators improves the retrieval performance of CBIR. The practical problem of how to choose an optimal smoothing parameter for such density estimators as well as the selection of the histogram bin-width for CBIR applications are also discussed.Distance measures between color distributions are then described in a differential geometry-based framework. This allows the incorporation of geometrical features of the underlying color space into the distance measure between the probability distributions. The general framework is illustrated with two examples: Normal distributions and linear representations of distributions. The linear representation of color distributions is then used to derive new compact descriptors for color-based image retrieval. These descriptors are based on the combination of two ideas: Incorporating information from the structure of the color space with information from images and application of projection methods in the space of color distribution and the space of differences between neighboring color distributions. In our experiments we used several image databases containing more than 1,300,000 images. The experiments show that the method developed in this thesis is very fast and that the retrieval performance chievedcompares favorably with existing methods. A CBIR system has been developed and is currently available at http://www.media.itn.liu.se/cse.We also describe color invariant descriptors that can be used to retrieve images of objects independent of geometrical factors and the illumination conditions under which these images were taken. Both statistics- and physics-based methods are proposed and examined. We investigated the interaction between light and material using different physical models and applied the theory of transformation groups to derive geometry color invariants. Using the proposed framework, we are able to construct all independent invariants for a given physical model. The dichromatic reflection model and the Kubelka-Munk model are used as examples for the framework.The proposed color invariant descriptors are then applied to both CBIR, color image segmentation, and color correction applications. In the last chapter of the thesis we describe an industrial application where different color correction methods are used to optimize the layout of a newspaper page." @default.
- W133053503 created "2016-06-24" @default.
- W133053503 creator A5039179623 @default.
- W133053503 date "2003-01-01" @default.
- W133053503 modified "2023-09-23" @default.
- W133053503 title "Efficient Image Retrieval with Statistical Color Descriptors" @default.
- W133053503 cites W1491192762 @default.
- W133053503 cites W1501394472 @default.
- W133053503 cites W1511670827 @default.
- W133053503 cites W1513763184 @default.
- W133053503 cites W1520168181 @default.
- W133053503 cites W1520390271 @default.
- W133053503 cites W1541459201 @default.
- W133053503 cites W1585910451 @default.
- W133053503 cites W1655795019 @default.
- W133053503 cites W1680579736 @default.
- W133053503 cites W173810020 @default.
- W133053503 cites W1752870650 @default.
- W133053503 cites W1837120581 @default.
- W133053503 cites W1917380066 @default.
- W133053503 cites W1947400014 @default.
- W133053503 cites W1964443764 @default.
- W133053503 cites W1969294188 @default.
- W133053503 cites W1975830550 @default.
- W133053503 cites W1977377710 @default.
- W133053503 cites W1978613449 @default.
- W133053503 cites W1982366717 @default.
- W133053503 cites W1983993791 @default.
- W133053503 cites W1988030911 @default.
- W133053503 cites W1990834635 @default.
- W133053503 cites W1991135461 @default.
- W133053503 cites W1992593992 @default.
- W133053503 cites W1993959163 @default.
- W133053503 cites W2002287862 @default.
- W133053503 cites W2006274070 @default.
- W133053503 cites W2008297189 @default.
- W133053503 cites W2013765095 @default.
- W133053503 cites W2014901406 @default.
- W133053503 cites W2023710283 @default.
- W133053503 cites W2035470580 @default.
- W133053503 cites W2035846779 @default.
- W133053503 cites W2039310800 @default.
- W133053503 cites W2045670925 @default.
- W133053503 cites W2048092465 @default.
- W133053503 cites W2051519617 @default.
- W133053503 cites W2056472112 @default.
- W133053503 cites W2057254291 @default.
- W133053503 cites W2057539798 @default.
- W133053503 cites W2063490865 @default.
- W133053503 cites W2063587308 @default.
- W133053503 cites W2066610120 @default.
- W133053503 cites W2067593945 @default.
- W133053503 cites W2072227363 @default.
- W133053503 cites W2072940124 @default.
- W133053503 cites W2073953612 @default.
- W133053503 cites W2077325236 @default.
- W133053503 cites W2077501305 @default.
- W133053503 cites W2078128010 @default.
- W133053503 cites W2081725613 @default.
- W133053503 cites W2087122110 @default.
- W133053503 cites W2087401004 @default.
- W133053503 cites W2098116514 @default.
- W133053503 cites W2098347925 @default.
- W133053503 cites W2109464092 @default.
- W133053503 cites W2109506130 @default.
- W133053503 cites W2116013009 @default.
- W133053503 cites W2118783153 @default.
- W133053503 cites W2123702567 @default.
- W133053503 cites W2125101937 @default.
- W133053503 cites W2125148312 @default.
- W133053503 cites W2129249398 @default.
- W133053503 cites W2129905273 @default.
- W133053503 cites W2131620262 @default.
- W133053503 cites W2133777675 @default.
- W133053503 cites W2134928010 @default.
- W133053503 cites W2135346934 @default.
- W133053503 cites W2136427942 @default.
- W133053503 cites W2137460067 @default.
- W133053503 cites W2139207118 @default.
- W133053503 cites W2142635246 @default.
- W133053503 cites W2149487138 @default.
- W133053503 cites W2149703947 @default.
- W133053503 cites W2151135734 @default.
- W133053503 cites W2152098612 @default.
- W133053503 cites W2157005738 @default.
- W133053503 cites W2160063258 @default.
- W133053503 cites W2160477239 @default.
- W133053503 cites W2163288162 @default.
- W133053503 cites W2166737325 @default.
- W133053503 cites W2167778199 @default.
- W133053503 cites W2168962753 @default.
- W133053503 cites W2277541416 @default.
- W133053503 cites W2284093350 @default.
- W133053503 cites W2284239051 @default.
- W133053503 cites W2296249689 @default.
- W133053503 cites W2799055878 @default.
- W133053503 cites W2799119698 @default.
- W133053503 cites W2914885528 @default.
- W133053503 cites W2979220766 @default.
- W133053503 cites W3023646433 @default.