Matches in SemOpenAlex for { <https://semopenalex.org/work/W134484390> ?p ?o ?g. }
- W134484390 abstract "Shannon’s Rate-Distortion Theory describes the number of bits needed to approximately represent typical realizations of a stochastic process X = (X(t) : t ∈ T ), while Kolmogorov’s ǫ-entropy describes the number of bits needed to approximately represent an arbitrary member f = (f(t) : t ∈ T ) of a functional class F . For many stochastic processes a great deal is known about the behavior of the rate distortion function, while for few functional classes F has there been success in determining, say, the precise asymptotics of the ǫ-entropy. Let W 2,0(γ) denote the class of functions f(t) on T = [0, 2π) with periodic boundary conditions and 1 2π ∫ 2π 0 f(t)dt + 1 2π ∫ 2π 0 f (t)dt ≤ γ. We show that for approximating functions of this class in L norm we have the precise asymptotics of the Kolmogorov ǫentropy: Hǫ(W m 2,0(γ)) ∼ 2m(log2 e)(γ/2ǫ) , ǫ → 0. (0.1) This follows from a connection between the Shannon and Kolmogorov theories, which allows us to exploit the powerful formalism of Shannon’s Rate-Distortion theory to obtain information about the Kolmogorov ǫ-entropy. In fact, the Kolmogorov ǫ-entropy is asymptotically equivalent, as ǫ → 0, to the maximum Rate-Distortion R(D,X) over all stochastic processes X with sample paths in W 2,0(γ), where we make the calibration D = ǫ . There is a family of Gaussian processes X∗ D which asymptotically, as D → 0, take realizations in W 2,0(γ), and for which the process at index D has essentially the highest rate-distortion R(D,X) of all processes X living in W 2,0(γ). We evaluate the rate-distortion function of members of this family, giving formula (0.1). These results strongly parallel a key result in modern statistical decision theory, Pinsker’s theorem. This points to a connection between theories of statistical estimation and data compression, which will be the theme of these Lectures." @default.
- W134484390 created "2016-06-24" @default.
- W134484390 creator A5030763559 @default.
- W134484390 creator A5035337773 @default.
- W134484390 creator A5051149888 @default.
- W134484390 creator A5061042317 @default.
- W134484390 creator A5063491963 @default.
- W134484390 creator A5065355421 @default.
- W134484390 date "2007-01-01" @default.
- W134484390 modified "2023-09-27" @default.
- W134484390 title "Wald Lecture I: Counting Bits with Kolmogorov and Shannon" @default.
- W134484390 cites W1537193711 @default.
- W134484390 cites W1608472120 @default.
- W134484390 cites W1990393033 @default.
- W134484390 cites W1995875735 @default.
- W134484390 cites W2004060143 @default.
- W134484390 cites W2046495522 @default.
- W134484390 cites W2059120410 @default.
- W134484390 cites W2075002608 @default.
- W134484390 cites W2092074494 @default.
- W134484390 cites W2099111195 @default.
- W134484390 cites W2100378142 @default.
- W134484390 cites W2106745795 @default.
- W134484390 cites W2114715837 @default.
- W134484390 cites W2144452965 @default.
- W134484390 cites W2146124189 @default.
- W134484390 cites W2156254348 @default.
- W134484390 cites W2254936370 @default.
- W134484390 hasPublicationYear "2007" @default.
- W134484390 type Work @default.
- W134484390 sameAs 134484390 @default.
- W134484390 citedByCount "1" @default.
- W134484390 countsByYear W1344843902014 @default.
- W134484390 crossrefType "journal-article" @default.
- W134484390 hasAuthorship W134484390A5030763559 @default.
- W134484390 hasAuthorship W134484390A5035337773 @default.
- W134484390 hasAuthorship W134484390A5051149888 @default.
- W134484390 hasAuthorship W134484390A5061042317 @default.
- W134484390 hasAuthorship W134484390A5063491963 @default.
- W134484390 hasAuthorship W134484390A5065355421 @default.
- W134484390 hasConcept C105795698 @default.
- W134484390 hasConcept C106301342 @default.
- W134484390 hasConcept C114614502 @default.
- W134484390 hasConcept C118615104 @default.
- W134484390 hasConcept C121332964 @default.
- W134484390 hasConcept C125252325 @default.
- W134484390 hasConcept C134306372 @default.
- W134484390 hasConcept C142611142 @default.
- W134484390 hasConcept C15995199 @default.
- W134484390 hasConcept C186219872 @default.
- W134484390 hasConcept C2779341405 @default.
- W134484390 hasConcept C33923547 @default.
- W134484390 hasConcept C44415725 @default.
- W134484390 hasConcept C51544822 @default.
- W134484390 hasConcept C52622258 @default.
- W134484390 hasConcept C59465623 @default.
- W134484390 hasConcept C62520636 @default.
- W134484390 hasConcept C78045399 @default.
- W134484390 hasConcept C9679016 @default.
- W134484390 hasConceptScore W134484390C105795698 @default.
- W134484390 hasConceptScore W134484390C106301342 @default.
- W134484390 hasConceptScore W134484390C114614502 @default.
- W134484390 hasConceptScore W134484390C118615104 @default.
- W134484390 hasConceptScore W134484390C121332964 @default.
- W134484390 hasConceptScore W134484390C125252325 @default.
- W134484390 hasConceptScore W134484390C134306372 @default.
- W134484390 hasConceptScore W134484390C142611142 @default.
- W134484390 hasConceptScore W134484390C15995199 @default.
- W134484390 hasConceptScore W134484390C186219872 @default.
- W134484390 hasConceptScore W134484390C2779341405 @default.
- W134484390 hasConceptScore W134484390C33923547 @default.
- W134484390 hasConceptScore W134484390C44415725 @default.
- W134484390 hasConceptScore W134484390C51544822 @default.
- W134484390 hasConceptScore W134484390C52622258 @default.
- W134484390 hasConceptScore W134484390C59465623 @default.
- W134484390 hasConceptScore W134484390C62520636 @default.
- W134484390 hasConceptScore W134484390C78045399 @default.
- W134484390 hasConceptScore W134484390C9679016 @default.
- W134484390 hasLocation W1344843901 @default.
- W134484390 hasOpenAccess W134484390 @default.
- W134484390 hasPrimaryLocation W1344843901 @default.
- W134484390 hasRelatedWork W134771198 @default.
- W134484390 hasRelatedWork W165567973 @default.
- W134484390 hasRelatedWork W1659919128 @default.
- W134484390 hasRelatedWork W1941027111 @default.
- W134484390 hasRelatedWork W1963714278 @default.
- W134484390 hasRelatedWork W2009053735 @default.
- W134484390 hasRelatedWork W2050122342 @default.
- W134484390 hasRelatedWork W2072302731 @default.
- W134484390 hasRelatedWork W2092926335 @default.
- W134484390 hasRelatedWork W2096678403 @default.
- W134484390 hasRelatedWork W2110629362 @default.
- W134484390 hasRelatedWork W2152422419 @default.
- W134484390 hasRelatedWork W2155441105 @default.
- W134484390 hasRelatedWork W2325434960 @default.
- W134484390 hasRelatedWork W2375553318 @default.
- W134484390 hasRelatedWork W2469410023 @default.
- W134484390 hasRelatedWork W2547071745 @default.
- W134484390 hasRelatedWork W2788378756 @default.
- W134484390 hasRelatedWork W2916799232 @default.