Matches in SemOpenAlex for { <https://semopenalex.org/work/W134667244> ?p ?o ?g. }
Showing items 1 to 54 of
54
with 100 items per page.
- W134667244 abstract "Probabilistic graphical models such as Bayesian networks and junction trees are widely used to compactly represent joint probability distributions. They have found applications in a number of domains, including medical diagnosis, credit assessment, genetics, among others. The computational complexity of exact inference, a key problem in exploring probabilistic graphical models, increases dramatically with the density of the network, the clique width and the number of states of random variables. In many cases, exact inference must be performed in real time.In this work, we explore parallelism for exact inference at various granularities on state-of-the-art high performance computing platforms. We first study parallel techniques for converting an arbitrary Bayesian network into a junction tree. Then, at a fine grained level, we explore data parallelism in node level primitives for exact inference in junction trees. Based on the node level primitives, we develop computation kernels for evidence collection and distribution on both clusters and multicore processors. In addition, we propose a junction tree decomposition approach for exact inference on a cluster of processors to explore structural parallelism at a coarse grained level. To utilize structural parallelism dynamically, we also develop various schedulers for exact inference. Specifically, we develop a centralized scheduler for heterogeneous processors, a lock-free collaborative scheduler for multicore processors, and a hierarchical scheduler with dynamic thread grouping for manycore processors. The schedulers balance the workload across the cores and partition large tasks at runtime to adapt to the processor architecture. Finally, for junction trees offering limited parallelism at both data and structural levels, we propose a pointer jumping based method for exact inference to accelerate evidence propagation. We implemented our proposed methods using Pthreads andMessage Passing Interface (MPI) on various platforms, including clusters, general-purpose multicore processors, heterogeneous multicore processors, and manycore processors. Compared with various baseline algorithms using a representative set of junction trees, our proposed methods exhibit superior performance." @default.
- W134667244 created "2016-06-24" @default.
- W134667244 creator A5033166029 @default.
- W134667244 creator A5052933431 @default.
- W134667244 date "2010-01-01" @default.
- W134667244 modified "2023-09-27" @default.
- W134667244 title "Exploration of parallelism for probabilistic graphical models" @default.
- W134667244 hasPublicationYear "2010" @default.
- W134667244 type Work @default.
- W134667244 sameAs 134667244 @default.
- W134667244 citedByCount "0" @default.
- W134667244 crossrefType "journal-article" @default.
- W134667244 hasAuthorship W134667244A5033166029 @default.
- W134667244 hasAuthorship W134667244A5052933431 @default.
- W134667244 hasConcept C154945302 @default.
- W134667244 hasConcept C155846161 @default.
- W134667244 hasConcept C173608175 @default.
- W134667244 hasConcept C2776214188 @default.
- W134667244 hasConcept C2777472644 @default.
- W134667244 hasConcept C2781172179 @default.
- W134667244 hasConcept C33724603 @default.
- W134667244 hasConcept C41008148 @default.
- W134667244 hasConcept C42992933 @default.
- W134667244 hasConcept C49937458 @default.
- W134667244 hasConcept C61483411 @default.
- W134667244 hasConcept C78766204 @default.
- W134667244 hasConcept C80444323 @default.
- W134667244 hasConceptScore W134667244C154945302 @default.
- W134667244 hasConceptScore W134667244C155846161 @default.
- W134667244 hasConceptScore W134667244C173608175 @default.
- W134667244 hasConceptScore W134667244C2776214188 @default.
- W134667244 hasConceptScore W134667244C2777472644 @default.
- W134667244 hasConceptScore W134667244C2781172179 @default.
- W134667244 hasConceptScore W134667244C33724603 @default.
- W134667244 hasConceptScore W134667244C41008148 @default.
- W134667244 hasConceptScore W134667244C42992933 @default.
- W134667244 hasConceptScore W134667244C49937458 @default.
- W134667244 hasConceptScore W134667244C61483411 @default.
- W134667244 hasConceptScore W134667244C78766204 @default.
- W134667244 hasConceptScore W134667244C80444323 @default.
- W134667244 hasLocation W1346672441 @default.
- W134667244 hasOpenAccess W134667244 @default.
- W134667244 hasPrimaryLocation W1346672441 @default.
- W134667244 hasRelatedWork W1150537129 @default.
- W134667244 hasRelatedWork W2143808294 @default.
- W134667244 hasRelatedWork W2245224239 @default.
- W134667244 hasRelatedWork W2304710340 @default.
- W134667244 hasRelatedWork W2520636943 @default.
- W134667244 hasRelatedWork W2521644007 @default.
- W134667244 hasRelatedWork W2275552843 @default.
- W134667244 isParatext "false" @default.
- W134667244 isRetracted "false" @default.
- W134667244 magId "134667244" @default.
- W134667244 workType "article" @default.