Matches in SemOpenAlex for { <https://semopenalex.org/work/W134832242> ?p ?o ?g. }
- W134832242 abstract "The Ph.D. thesis is mainly concerned with two generalizations of Szego limit theorem, in a “smooth” and in a “discontinuous” setting. The first generalization has common combinatorial background with certain problems for random walks. In the first chapter, we explicitly compute the third term in Szego asymptotic formula for Zoll manifolds. This includes the case of the operator of multiplication by a smooth function on the sphere in any dimension. A possible application is an expression for a regularized determinant of a multiplication operator, or a zeroth order pseudodifferential operator, on the two dimensional sphere. Further asymptotic terms can also be calculated by our method, however the corresponding computation becomes very involved. We also calculate moments and certain joint distributions for maximal non-negative excursions of random walks with independent identically distributed steps. The main tool in both proofs is a new combinatorial identity, which is called generalized Hunt–Dyson formula, abbreviated as gHD, and is equivalent to Bohnenblust–Spitzer theorem (BSt). In the second chapter, we prove gHD, which is a formula for the quantity ∑ σ∈S m [( max(0, xσ1 , xσ1 + xσ2 , · · · , xσ1 + · · · + xσm) )n − ( max(0, xσ1 , xσ1 + xσ2 , · · · , xσ1 + · · · + xσm−1) )n] , where the summation is taken over all permutations of m real variables x1, · · · , xm, and n is an arbitrary natural power. In the case of power n = 1 the latter identity reduces to the classical Hunt–Dyson formula (HD). After that we establish a connection between gHD and BSt. More precisely, we derive BSt from gHD and vice versa providing the former with a new proof. In the third chapter, a one term Szego type asymptotic formula with a sharp remainder estimate for a class of integral operators with symbols having discontinuities in both position variable and momentum is established. In this case a logarithmic factor appears in the asymptotics. 2000 Mathematics Subject Classification. Primary: 58J40, 58J37, 58J52, 47B35, 35Pxx, 35S05. Secondary: 60C05, 60G50, 05A19, 05E05. ISBN 91–7283–072–7 • TRITA-MAT–01–MA–03 • ISSN 1401–2278 • ISRN KTH/MAT/R–03/01–SE" @default.
- W134832242 created "2016-06-24" @default.
- W134832242 creator A5035243343 @default.
- W134832242 date "2001-01-01" @default.
- W134832242 modified "2023-09-24" @default.
- W134832242 title "Generalizations of Szego Limit Theorem : Higher Order Terms and Discontinuous Symbols" @default.
- W134832242 cites W1526288311 @default.
- W134832242 cites W1590471072 @default.
- W134832242 cites W1878162265 @default.
- W134832242 cites W1969665650 @default.
- W134832242 cites W1970128476 @default.
- W134832242 cites W1987148403 @default.
- W134832242 cites W1996466655 @default.
- W134832242 cites W2002751207 @default.
- W134832242 cites W2004597586 @default.
- W134832242 cites W2009174488 @default.
- W134832242 cites W2020482247 @default.
- W134832242 cites W2021478605 @default.
- W134832242 cites W2026243181 @default.
- W134832242 cites W2044944722 @default.
- W134832242 cites W2054777142 @default.
- W134832242 cites W2058294074 @default.
- W134832242 cites W2062977121 @default.
- W134832242 cites W2068184834 @default.
- W134832242 cites W2073544586 @default.
- W134832242 cites W2075861364 @default.
- W134832242 cites W2082952025 @default.
- W134832242 cites W2085320715 @default.
- W134832242 cites W2264658725 @default.
- W134832242 cites W2318958213 @default.
- W134832242 cites W2332001205 @default.
- W134832242 cites W2332453137 @default.
- W134832242 cites W2530207180 @default.
- W134832242 cites W2565201235 @default.
- W134832242 cites W2591340843 @default.
- W134832242 cites W265356419 @default.
- W134832242 cites W2751862591 @default.
- W134832242 cites W2797228403 @default.
- W134832242 cites W2800778781 @default.
- W134832242 hasPublicationYear "2001" @default.
- W134832242 type Work @default.
- W134832242 sameAs 134832242 @default.
- W134832242 citedByCount "6" @default.
- W134832242 countsByYear W1348322422012 @default.
- W134832242 countsByYear W1348322422018 @default.
- W134832242 crossrefType "journal-article" @default.
- W134832242 hasAuthorship W134832242A5035243343 @default.
- W134832242 hasConcept C10138342 @default.
- W134832242 hasConcept C104317684 @default.
- W134832242 hasConcept C105795698 @default.
- W134832242 hasConcept C114614502 @default.
- W134832242 hasConcept C118615104 @default.
- W134832242 hasConcept C121194460 @default.
- W134832242 hasConcept C121332964 @default.
- W134832242 hasConcept C13355873 @default.
- W134832242 hasConcept C134306372 @default.
- W134832242 hasConcept C151201525 @default.
- W134832242 hasConcept C158448853 @default.
- W134832242 hasConcept C162324750 @default.
- W134832242 hasConcept C166785042 @default.
- W134832242 hasConcept C17020691 @default.
- W134832242 hasConcept C177148314 @default.
- W134832242 hasConcept C182306322 @default.
- W134832242 hasConcept C185592680 @default.
- W134832242 hasConcept C202444582 @default.
- W134832242 hasConcept C24209939 @default.
- W134832242 hasConcept C24890656 @default.
- W134832242 hasConcept C2524010 @default.
- W134832242 hasConcept C2778355321 @default.
- W134832242 hasConcept C33676613 @default.
- W134832242 hasConcept C33923547 @default.
- W134832242 hasConcept C55493867 @default.
- W134832242 hasConcept C86339819 @default.
- W134832242 hasConceptScore W134832242C10138342 @default.
- W134832242 hasConceptScore W134832242C104317684 @default.
- W134832242 hasConceptScore W134832242C105795698 @default.
- W134832242 hasConceptScore W134832242C114614502 @default.
- W134832242 hasConceptScore W134832242C118615104 @default.
- W134832242 hasConceptScore W134832242C121194460 @default.
- W134832242 hasConceptScore W134832242C121332964 @default.
- W134832242 hasConceptScore W134832242C13355873 @default.
- W134832242 hasConceptScore W134832242C134306372 @default.
- W134832242 hasConceptScore W134832242C151201525 @default.
- W134832242 hasConceptScore W134832242C158448853 @default.
- W134832242 hasConceptScore W134832242C162324750 @default.
- W134832242 hasConceptScore W134832242C166785042 @default.
- W134832242 hasConceptScore W134832242C17020691 @default.
- W134832242 hasConceptScore W134832242C177148314 @default.
- W134832242 hasConceptScore W134832242C182306322 @default.
- W134832242 hasConceptScore W134832242C185592680 @default.
- W134832242 hasConceptScore W134832242C202444582 @default.
- W134832242 hasConceptScore W134832242C24209939 @default.
- W134832242 hasConceptScore W134832242C24890656 @default.
- W134832242 hasConceptScore W134832242C2524010 @default.
- W134832242 hasConceptScore W134832242C2778355321 @default.
- W134832242 hasConceptScore W134832242C33676613 @default.
- W134832242 hasConceptScore W134832242C33923547 @default.
- W134832242 hasConceptScore W134832242C55493867 @default.
- W134832242 hasConceptScore W134832242C86339819 @default.
- W134832242 hasLocation W1348322421 @default.