Matches in SemOpenAlex for { <https://semopenalex.org/work/W135025720> ?p ?o ?g. }
- W135025720 abstract "Content-based image retrieval (CBIR) has been applied to a variety of medical applications, e.g., pathology research and clinical decision support, and bag-of-features (BOF) model is one of the most widely used techniques. In this study, we address the problem of vocabulary pruning to reduce the influence from the redundant and noisy visual words. The conditional probability of each word upon the hidden topics extracted using probabilistic Latent Semantic Analysis (pLSA) is firstly calculated. A ranking method is then proposed to compute the significance of the words based on the relationship between the words and topics. Experiments on the publicly available Early Lung Cancer Action Program (ELCAP) database show that the method can reduce the number of words required while improving the retrieval performance. The proposed method is applicable to general image retrieval since it is independent of the problem domain." @default.
- W135025720 created "2016-06-24" @default.
- W135025720 creator A5013984140 @default.
- W135025720 creator A5041567418 @default.
- W135025720 creator A5053447705 @default.
- W135025720 creator A5062546146 @default.
- W135025720 creator A5068891693 @default.
- W135025720 creator A5076697411 @default.
- W135025720 creator A5090002703 @default.
- W135025720 date "2015-01-01" @default.
- W135025720 modified "2023-10-06" @default.
- W135025720 title "Ranking-Based Vocabulary Pruning in Bag-of-Features for Image Retrieval" @default.
- W135025720 cites W146996797 @default.
- W135025720 cites W1584556733 @default.
- W135025720 cites W1589362500 @default.
- W135025720 cites W1695355397 @default.
- W135025720 cites W1762722454 @default.
- W135025720 cites W1975021299 @default.
- W135025720 cites W1982601680 @default.
- W135025720 cites W1986643265 @default.
- W135025720 cites W1990241563 @default.
- W135025720 cites W2016209032 @default.
- W135025720 cites W2026387627 @default.
- W135025720 cites W2035153516 @default.
- W135025720 cites W2036718463 @default.
- W135025720 cites W2036924016 @default.
- W135025720 cites W2052271957 @default.
- W135025720 cites W2076188996 @default.
- W135025720 cites W2076595471 @default.
- W135025720 cites W2096100960 @default.
- W135025720 cites W2102982979 @default.
- W135025720 cites W2103924867 @default.
- W135025720 cites W2111997505 @default.
- W135025720 cites W2113180829 @default.
- W135025720 cites W2123335376 @default.
- W135025720 cites W2130636477 @default.
- W135025720 cites W2130660124 @default.
- W135025720 cites W2131846894 @default.
- W135025720 cites W2134108967 @default.
- W135025720 cites W2135364649 @default.
- W135025720 cites W2159651953 @default.
- W135025720 cites W2161955059 @default.
- W135025720 cites W2169771634 @default.
- W135025720 cites W2477033558 @default.
- W135025720 cites W4233135949 @default.
- W135025720 cites W2023654230 @default.
- W135025720 doi "https://doi.org/10.1007/978-3-319-14803-8_34" @default.
- W135025720 hasPublicationYear "2015" @default.
- W135025720 type Work @default.
- W135025720 sameAs 135025720 @default.
- W135025720 citedByCount "6" @default.
- W135025720 countsByYear W1350257202016 @default.
- W135025720 countsByYear W1350257202017 @default.
- W135025720 countsByYear W1350257202019 @default.
- W135025720 crossrefType "book-chapter" @default.
- W135025720 hasAuthorship W135025720A5013984140 @default.
- W135025720 hasAuthorship W135025720A5041567418 @default.
- W135025720 hasAuthorship W135025720A5053447705 @default.
- W135025720 hasAuthorship W135025720A5062546146 @default.
- W135025720 hasAuthorship W135025720A5068891693 @default.
- W135025720 hasAuthorship W135025720A5076697411 @default.
- W135025720 hasAuthorship W135025720A5090002703 @default.
- W135025720 hasConcept C108010975 @default.
- W135025720 hasConcept C112933361 @default.
- W135025720 hasConcept C115961682 @default.
- W135025720 hasConcept C134306372 @default.
- W135025720 hasConcept C13672336 @default.
- W135025720 hasConcept C138885662 @default.
- W135025720 hasConcept C153180895 @default.
- W135025720 hasConcept C154945302 @default.
- W135025720 hasConcept C1667742 @default.
- W135025720 hasConcept C184337299 @default.
- W135025720 hasConcept C189391414 @default.
- W135025720 hasConcept C189430467 @default.
- W135025720 hasConcept C199360897 @default.
- W135025720 hasConcept C204321447 @default.
- W135025720 hasConcept C23123220 @default.
- W135025720 hasConcept C2524010 @default.
- W135025720 hasConcept C2777601683 @default.
- W135025720 hasConcept C33923547 @default.
- W135025720 hasConcept C36503486 @default.
- W135025720 hasConcept C41008148 @default.
- W135025720 hasConcept C41895202 @default.
- W135025720 hasConcept C49937458 @default.
- W135025720 hasConcept C6557445 @default.
- W135025720 hasConcept C86803240 @default.
- W135025720 hasConcept C90805587 @default.
- W135025720 hasConceptScore W135025720C108010975 @default.
- W135025720 hasConceptScore W135025720C112933361 @default.
- W135025720 hasConceptScore W135025720C115961682 @default.
- W135025720 hasConceptScore W135025720C134306372 @default.
- W135025720 hasConceptScore W135025720C13672336 @default.
- W135025720 hasConceptScore W135025720C138885662 @default.
- W135025720 hasConceptScore W135025720C153180895 @default.
- W135025720 hasConceptScore W135025720C154945302 @default.
- W135025720 hasConceptScore W135025720C1667742 @default.
- W135025720 hasConceptScore W135025720C184337299 @default.
- W135025720 hasConceptScore W135025720C189391414 @default.
- W135025720 hasConceptScore W135025720C189430467 @default.
- W135025720 hasConceptScore W135025720C199360897 @default.