Matches in SemOpenAlex for { <https://semopenalex.org/work/W13710472> ?p ?o ?g. }
Showing items 1 to 49 of
49
with 100 items per page.
- W13710472 endingPage "14" @default.
- W13710472 startingPage "1" @default.
- W13710472 abstract "Cancer informatics is a multidisciplinary field of research. It includes oncology, pathology, radiology, computational biology, physical chemistry, computer science, information systems, biostatistics, machine learning, artificial intelligence (AI), data mining and many others. Machine learning (ML) offers potentially powerful tools, intelligent methods, and algorithms that can help in solving many medical and biological problems. The variety of ML algorithms enable the design of a robust techniques and new methodologies for managing, representing, accumulating, changing, discovering, and updating knowledge in cancer-based systems. Moreover it supports learning and understanding the mechanisms that will help oncologists, radiologists and pathologists to induce knowledge from cancer information databases. This paper presents the research results of the author and his colleagues that have been carried out in recent years on using machine learning in cancer informatics. In addition the talk discusses several directions for future research." @default.
- W13710472 created "2016-06-24" @default.
- W13710472 creator A5026682729 @default.
- W13710472 date "2013-01-01" @default.
- W13710472 modified "2023-10-14" @default.
- W13710472 title "Machine Learning Applications in Cancer Informatics" @default.
- W13710472 cites W187605729 @default.
- W13710472 cites W1992419399 @default.
- W13710472 cites W199770900 @default.
- W13710472 cites W4298096392 @default.
- W13710472 cites W51251913 @default.
- W13710472 doi "https://doi.org/10.1007/978-3-319-00029-9_1" @default.
- W13710472 hasPublicationYear "2013" @default.
- W13710472 type Work @default.
- W13710472 sameAs 13710472 @default.
- W13710472 citedByCount "0" @default.
- W13710472 crossrefType "book-chapter" @default.
- W13710472 hasAuthorship W13710472A5026682729 @default.
- W13710472 hasConcept C119599485 @default.
- W13710472 hasConcept C119857082 @default.
- W13710472 hasConcept C127413603 @default.
- W13710472 hasConcept C154945302 @default.
- W13710472 hasConcept C191630685 @default.
- W13710472 hasConcept C41008148 @default.
- W13710472 hasConceptScore W13710472C119599485 @default.
- W13710472 hasConceptScore W13710472C119857082 @default.
- W13710472 hasConceptScore W13710472C127413603 @default.
- W13710472 hasConceptScore W13710472C154945302 @default.
- W13710472 hasConceptScore W13710472C191630685 @default.
- W13710472 hasConceptScore W13710472C41008148 @default.
- W13710472 hasLocation W137104721 @default.
- W13710472 hasOpenAccess W13710472 @default.
- W13710472 hasPrimaryLocation W137104721 @default.
- W13710472 hasRelatedWork W2961085424 @default.
- W13710472 hasRelatedWork W3046775127 @default.
- W13710472 hasRelatedWork W3107474891 @default.
- W13710472 hasRelatedWork W3170094116 @default.
- W13710472 hasRelatedWork W3209574120 @default.
- W13710472 hasRelatedWork W4205958290 @default.
- W13710472 hasRelatedWork W4286629047 @default.
- W13710472 hasRelatedWork W4306321456 @default.
- W13710472 hasRelatedWork W4306674287 @default.
- W13710472 hasRelatedWork W4224009465 @default.
- W13710472 isParatext "false" @default.
- W13710472 isRetracted "false" @default.
- W13710472 magId "13710472" @default.
- W13710472 workType "book-chapter" @default.