Matches in SemOpenAlex for { <https://semopenalex.org/work/W137171035> ?p ?o ?g. }
- W137171035 abstract "This thesis starts by proposing a new framework for motion planning using stochastic maps, such as occupancy-grid maps. In autonomous robotics applications, the robot's map of the environment is typically constructed online, using techniques from SLAM. These methods can construct a dense map of the environment, or a sparse map that contains a set of identifiable landmarks. In this situation, path planning would be performed using the dense map, and the path would be executed in a sensor-based fashion, using feedback control to track the reference path based on sensor information regarding landmark position. Maximum-likelihood estimation techniques are used to model the sensing process as well as to estimate the most likely nominal path that will be followed by the robot during execution of the plan. The proposed approach is potentially a practical way to plan under the specific sorts of uncertainty confronted by a humanoid robot. The next chapter, presents methods for constructing free paths in dynamic environments. The chapter begins with a comprehensive review of past methods, ranging from modifying sampling-based methods for the dynamic obstacle problem, to methods that were specifically designed for this problem. The thesis proposes to adapt a method reported originally by Leven et al.. so that it can be used to plan paths for humanoid robots in dynamic environments. The basic idea of this method is to construct a mapping from voxels in a discretized representation of the workspace to vertices and arcs in a configuration space network built using sampling-based planning methods. When an obstacle intersects a voxel in the workspace, the corresponding nodes and arcs in the configuration space roadmap are marked as invalid. The part of the network that remains comprises the set of valid candidate paths. The specific approach described here extends previous work by imposing a two-level hierarchical structure on the representation of the workspace. The methods described in Chapters 2 and 3 essentially deal with low-dimensional problems (e.g., moving a bounding box). The reduction in dimensionality is essential, since the path planning problem confronted in these chapters is complicated by uncertainty and dynamic obstacles, respectively. Chapter 4 addresses the problem of planning the full motion of a humanoid robot (whole-body task planning). The approach presented here is essentially a four-step approach. First, multiple viable goal configurations are generated using a local task solver, and these are used in a classical path planning approach with one initial condition and multiple goals. This classical problem is solved using an RRT-based method. Once a path is found, optimization methods are applied to the goal posture. Finally, classic path optimization algorithms are applied to the solution path andposture optimization. The fifth chapter describes algorithms for building a representation of the environment using stereo vision as the sensing modality. Such algorithms are necessary components of the autonomous system proposed in the first chapter of the thesis. A simple occupancy-grid based method is proposed, in which each voxel in the grid is assigned a number indicating the probability that it is occupied. The representation is updated during execution based on values received from the sensing system. The sensor model used is a simple Gaussian observation model in which measured distance is assumed to be true distance plus additive Gaussian noise. Sequential Bayes updating is then used to incrementally update occupancy values as new measurements are received. Finally, chapter 6 provides some details about the overall system architecture, and in particular, about those components of the architecture that have been taken from existing software (and therefore, do not themselves represent contributions of the thesis). Several software systems are described, including GIK, WorldModelGrid3D, HppDynamicObstacle, and GenoM." @default.
- W137171035 created "2016-06-24" @default.
- W137171035 creator A5050227531 @default.
- W137171035 date "2009-09-24" @default.
- W137171035 modified "2023-09-27" @default.
- W137171035 title "Motion planning and perception : integration on humanoid robots" @default.
- W137171035 cites W101508493 @default.
- W137171035 cites W105995943 @default.
- W137171035 cites W133877806 @default.
- W137171035 cites W1499673022 @default.
- W137171035 cites W1506034303 @default.
- W137171035 cites W1516027685 @default.
- W137171035 cites W1519865121 @default.
- W137171035 cites W1521785144 @default.
- W137171035 cites W1539282749 @default.
- W137171035 cites W1553616171 @default.
- W137171035 cites W1581095231 @default.
- W137171035 cites W1769585818 @default.
- W137171035 cites W1863997888 @default.
- W137171035 cites W1906034729 @default.
- W137171035 cites W1977959925 @default.
- W137171035 cites W1991752086 @default.
- W137171035 cites W1999050017 @default.
- W137171035 cites W2015003349 @default.
- W137171035 cites W2016123536 @default.
- W137171035 cites W2034782581 @default.
- W137171035 cites W2036016432 @default.
- W137171035 cites W2048223041 @default.
- W137171035 cites W2072763216 @default.
- W137171035 cites W2081518222 @default.
- W137171035 cites W2087106963 @default.
- W137171035 cites W2094658339 @default.
- W137171035 cites W2098284408 @default.
- W137171035 cites W2101033030 @default.
- W137171035 cites W2102128251 @default.
- W137171035 cites W2104691494 @default.
- W137171035 cites W2108126009 @default.
- W137171035 cites W2111112078 @default.
- W137171035 cites W2114171536 @default.
- W137171035 cites W2114274278 @default.
- W137171035 cites W2120353515 @default.
- W137171035 cites W2124123377 @default.
- W137171035 cites W2128353551 @default.
- W137171035 cites W2128990851 @default.
- W137171035 cites W2132595917 @default.
- W137171035 cites W2133859362 @default.
- W137171035 cites W2141279501 @default.
- W137171035 cites W2141664020 @default.
- W137171035 cites W2144005549 @default.
- W137171035 cites W2146405081 @default.
- W137171035 cites W2149275380 @default.
- W137171035 cites W2150500908 @default.
- W137171035 cites W2152074150 @default.
- W137171035 cites W2152512906 @default.
- W137171035 cites W2152536965 @default.
- W137171035 cites W2152671441 @default.
- W137171035 cites W2154418813 @default.
- W137171035 cites W2159722616 @default.
- W137171035 cites W2161473822 @default.
- W137171035 cites W2163267929 @default.
- W137171035 cites W2169564405 @default.
- W137171035 cites W2170903322 @default.
- W137171035 cites W2294983528 @default.
- W137171035 cites W2336416123 @default.
- W137171035 cites W2545326092 @default.
- W137171035 cites W2611243847 @default.
- W137171035 cites W3173838801 @default.
- W137171035 cites W43657047 @default.
- W137171035 cites W96909829 @default.
- W137171035 cites W2115257338 @default.
- W137171035 hasPublicationYear "2009" @default.
- W137171035 type Work @default.
- W137171035 sameAs 137171035 @default.
- W137171035 citedByCount "0" @default.
- W137171035 crossrefType "dissertation" @default.
- W137171035 hasAuthorship W137171035A5050227531 @default.
- W137171035 hasConcept C121332964 @default.
- W137171035 hasConcept C154945302 @default.
- W137171035 hasConcept C177264268 @default.
- W137171035 hasConcept C199360897 @default.
- W137171035 hasConcept C19966478 @default.
- W137171035 hasConcept C2777735758 @default.
- W137171035 hasConcept C31972630 @default.
- W137171035 hasConcept C41008148 @default.
- W137171035 hasConcept C57077369 @default.
- W137171035 hasConcept C58581272 @default.
- W137171035 hasConcept C60692881 @default.
- W137171035 hasConcept C62520636 @default.
- W137171035 hasConcept C81074085 @default.
- W137171035 hasConcept C90509273 @default.
- W137171035 hasConcept C90738871 @default.
- W137171035 hasConceptScore W137171035C121332964 @default.
- W137171035 hasConceptScore W137171035C154945302 @default.
- W137171035 hasConceptScore W137171035C177264268 @default.
- W137171035 hasConceptScore W137171035C199360897 @default.
- W137171035 hasConceptScore W137171035C19966478 @default.
- W137171035 hasConceptScore W137171035C2777735758 @default.
- W137171035 hasConceptScore W137171035C31972630 @default.
- W137171035 hasConceptScore W137171035C41008148 @default.
- W137171035 hasConceptScore W137171035C57077369 @default.