Matches in SemOpenAlex for { <https://semopenalex.org/work/W137285713> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W137285713 abstract "A mixed-integer program is an optimization problem where one is required to minimize a linear function over a subset defined by a system of linear inequalities, with the additional restriction that some of the variables must take an integer value. Many real-world problems can be formulated as mixed-integer programs.Solving mixed-integer programs is difficult in general. A common approach to tackle this kind of problems exploits the fact that (under mild assumptions) the convex hull of feasible solutions is a polyhedron. When the inequalities describing such a polyhedron are known explicitly, the mixed-integer program reduces to a linear program, which is a tractable problem. Unfortunately it is usually very hard to find a linear inequality description of the convex hull of feasible solutions of a mixed-integer program. However in some cases the introduction of additional variables allows one to give a simple description of such a convex hull by means of linear inequalities in a higher dimensional space. Such a description is called an extended formulation. If an extended formulation is known that is compact (i.e. it uses a polynomial number of variables and constraints), the original mixed-integer programming problem can be solved in polynomial time by means of linear programming algorithms.In this dissertation we study the family of mixed-integer programs whose feasible regions are defined by linear systems with totally unimodular matrices (i.e. all subdeterminants are 0, 1 or -1) having at most two nonzero entries per row. This class of problems is interesting because many instances arising e.g. in the context of production planning can be formulated as mixed-integer programs of this type.We illustrate a technique to construct an extended formulation for any problem in this family. The approach is based on the enumeration of all possible fractional parts that the variables take at the vertices of the convex hull of the feasible region.We then discuss the compactness of our extended formulation: we give sufficient conditions ensuring that the formulation is compact. When one of these conditions holds, the mixed-integer program can be solved in polynomial time. We also show how our technique can be successfully applied to some interesting practical problems.Next we consider the possibility of describing the convex hull of the feasible region in the original space of definition of the problem (i.e with no additional variables). Such a formulation is found explicitly for some special cases.Finally a possible extension is discussed: we show how a generalization of our technique can lead to a compact extended formulation for a problem that does not belong to the family introduced above." @default.
- W137285713 created "2016-06-24" @default.
- W137285713 creator A5086066603 @default.
- W137285713 date "2008-01-01" @default.
- W137285713 modified "2023-09-26" @default.
- W137285713 title "Formulations of mixed-integer sets defined by totally unimodular constraint matrices" @default.
- W137285713 hasPublicationYear "2008" @default.
- W137285713 type Work @default.
- W137285713 sameAs 137285713 @default.
- W137285713 citedByCount "1" @default.
- W137285713 crossrefType "journal-article" @default.
- W137285713 hasAuthorship W137285713A5086066603 @default.
- W137285713 hasConcept C109839438 @default.
- W137285713 hasConcept C112680207 @default.
- W137285713 hasConcept C114614502 @default.
- W137285713 hasConcept C118615104 @default.
- W137285713 hasConcept C123558587 @default.
- W137285713 hasConcept C126255220 @default.
- W137285713 hasConcept C134306372 @default.
- W137285713 hasConcept C147700949 @default.
- W137285713 hasConcept C199360897 @default.
- W137285713 hasConcept C201958917 @default.
- W137285713 hasConcept C206194317 @default.
- W137285713 hasConcept C2524010 @default.
- W137285713 hasConcept C33923547 @default.
- W137285713 hasConcept C41008148 @default.
- W137285713 hasConcept C41045048 @default.
- W137285713 hasConcept C45555294 @default.
- W137285713 hasConcept C54829058 @default.
- W137285713 hasConcept C56086750 @default.
- W137285713 hasConcept C84135550 @default.
- W137285713 hasConcept C90119067 @default.
- W137285713 hasConcept C97137487 @default.
- W137285713 hasConceptScore W137285713C109839438 @default.
- W137285713 hasConceptScore W137285713C112680207 @default.
- W137285713 hasConceptScore W137285713C114614502 @default.
- W137285713 hasConceptScore W137285713C118615104 @default.
- W137285713 hasConceptScore W137285713C123558587 @default.
- W137285713 hasConceptScore W137285713C126255220 @default.
- W137285713 hasConceptScore W137285713C134306372 @default.
- W137285713 hasConceptScore W137285713C147700949 @default.
- W137285713 hasConceptScore W137285713C199360897 @default.
- W137285713 hasConceptScore W137285713C201958917 @default.
- W137285713 hasConceptScore W137285713C206194317 @default.
- W137285713 hasConceptScore W137285713C2524010 @default.
- W137285713 hasConceptScore W137285713C33923547 @default.
- W137285713 hasConceptScore W137285713C41008148 @default.
- W137285713 hasConceptScore W137285713C41045048 @default.
- W137285713 hasConceptScore W137285713C45555294 @default.
- W137285713 hasConceptScore W137285713C54829058 @default.
- W137285713 hasConceptScore W137285713C56086750 @default.
- W137285713 hasConceptScore W137285713C84135550 @default.
- W137285713 hasConceptScore W137285713C90119067 @default.
- W137285713 hasConceptScore W137285713C97137487 @default.
- W137285713 hasLocation W1372857131 @default.
- W137285713 hasOpenAccess W137285713 @default.
- W137285713 hasPrimaryLocation W1372857131 @default.
- W137285713 hasRelatedWork W1577278402 @default.
- W137285713 hasRelatedWork W1729276322 @default.
- W137285713 hasRelatedWork W174303507 @default.
- W137285713 hasRelatedWork W1946377831 @default.
- W137285713 hasRelatedWork W1975112640 @default.
- W137285713 hasRelatedWork W1989755892 @default.
- W137285713 hasRelatedWork W2001036734 @default.
- W137285713 hasRelatedWork W2014273115 @default.
- W137285713 hasRelatedWork W2064928250 @default.
- W137285713 hasRelatedWork W2137614705 @default.
- W137285713 hasRelatedWork W2325671244 @default.
- W137285713 hasRelatedWork W2565484893 @default.
- W137285713 hasRelatedWork W2885961744 @default.
- W137285713 hasRelatedWork W2950664477 @default.
- W137285713 hasRelatedWork W2963491246 @default.
- W137285713 hasRelatedWork W3104419137 @default.
- W137285713 hasRelatedWork W3175301078 @default.
- W137285713 hasRelatedWork W339805186 @default.
- W137285713 hasRelatedWork W4767641 @default.
- W137285713 hasRelatedWork W578236900 @default.
- W137285713 isParatext "false" @default.
- W137285713 isRetracted "false" @default.
- W137285713 magId "137285713" @default.
- W137285713 workType "article" @default.