Matches in SemOpenAlex for { <https://semopenalex.org/work/W137677586> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W137677586 endingPage "715" @default.
- W137677586 startingPage "696" @default.
- W137677586 abstract "0. Introduction. Morse theory for distance functions was initiated by GroveShiohama [GS] and Gromov’s [G1] paper where basic notions of the theory were formulated; even this very initial level of the theory leads to important geometric applications. Grove and Shiohama [GS] established a generalized sphere theorem by constructing a vector field on a Riemannian manifold, with the property that the distance function had no stationary points along the integral curves at non-singular points of the vector field. They showed that this vector field had exactly two singular points and hence the manifold was homeomorphic to a sphere. Later Gromov [G1] was able to bound the sum of the Betti numbers of a positively curved Riemannian manifold. He controlled the location of critical points of a Riemannian distance function on a positively curved manifold using Toponogov’s theorem and then was able to bound the number of critical points of this function and hence the homology of the manifold, using a spectral sequence argument. Morse theory for Riemannian distance functions was discussed in [Gr], [L] and other papers, which explained its importance for geometric applications rather than developed the theory itself. Even a suitable concept of the index of a critical point has not been developed. As a result, the most powerful tools of the classical Morse theory such as Morse inequalities and the correspondence between critical points and the handle decomposition of the manifold cannot be used. The relationship with the classical Morse theory has not been investigated either; in particular, the connection between notions of the critical points in both theories is not obvious. In a different direction, the structure of Alexandrov spaces with curvatures bounded below was investigated using distance functions in several papers starting with [BGP] and continuing with [P1], [P2]. A key result obtained is a canonical stratification of such Alexandrov spaces into topological manifolds and again the technique is a type of Morse theory, using the distance function. As Alexandrov spaces do not have as much structure as Riemannian manifolds, our theory gives more detailed information on the nature of critical points and index. M. Gromov pointed out in [G1] that the Morse theory for Riemannian distance functions can be developed by analogy with the classical Morse theory. The aim of this paper is to construct a Morse theory for functions which are minima of finite families of smooth functions and clarify the connection with Riemannian distance functions for non-positively curved manifolds. We develop the theory in the classical style, including the notion of the index for critical points, and clarify relations with the Grove-Shiohama-Gromov approach." @default.
- W137677586 created "2016-06-24" @default.
- W137677586 creator A5042003965 @default.
- W137677586 creator A5056279910 @default.
- W137677586 date "1997-01-01" @default.
- W137677586 modified "2023-10-02" @default.
- W137677586 title "Morse theory for Min-type functions" @default.
- W137677586 cites W1949813140 @default.
- W137677586 cites W2008106590 @default.
- W137677586 cites W2053333600 @default.
- W137677586 cites W2072942753 @default.
- W137677586 cites W2087076015 @default.
- W137677586 cites W3139497334 @default.
- W137677586 cites W3144205924 @default.
- W137677586 doi "https://doi.org/10.4310/ajm.1997.v1.n4.a3" @default.
- W137677586 hasPublicationYear "1997" @default.
- W137677586 type Work @default.
- W137677586 sameAs 137677586 @default.
- W137677586 citedByCount "20" @default.
- W137677586 countsByYear W1376775862012 @default.
- W137677586 countsByYear W1376775862013 @default.
- W137677586 countsByYear W1376775862014 @default.
- W137677586 countsByYear W1376775862015 @default.
- W137677586 countsByYear W1376775862016 @default.
- W137677586 countsByYear W1376775862017 @default.
- W137677586 countsByYear W1376775862018 @default.
- W137677586 countsByYear W1376775862019 @default.
- W137677586 countsByYear W1376775862021 @default.
- W137677586 countsByYear W1376775862022 @default.
- W137677586 crossrefType "journal-article" @default.
- W137677586 hasAuthorship W137677586A5042003965 @default.
- W137677586 hasAuthorship W137677586A5056279910 @default.
- W137677586 hasBestOaLocation W1376775861 @default.
- W137677586 hasConcept C140031139 @default.
- W137677586 hasConcept C156730297 @default.
- W137677586 hasConcept C170315498 @default.
- W137677586 hasConcept C18903297 @default.
- W137677586 hasConcept C202444582 @default.
- W137677586 hasConcept C24296071 @default.
- W137677586 hasConcept C2777299769 @default.
- W137677586 hasConcept C33923547 @default.
- W137677586 hasConcept C41008148 @default.
- W137677586 hasConcept C76155785 @default.
- W137677586 hasConcept C86803240 @default.
- W137677586 hasConceptScore W137677586C140031139 @default.
- W137677586 hasConceptScore W137677586C156730297 @default.
- W137677586 hasConceptScore W137677586C170315498 @default.
- W137677586 hasConceptScore W137677586C18903297 @default.
- W137677586 hasConceptScore W137677586C202444582 @default.
- W137677586 hasConceptScore W137677586C24296071 @default.
- W137677586 hasConceptScore W137677586C2777299769 @default.
- W137677586 hasConceptScore W137677586C33923547 @default.
- W137677586 hasConceptScore W137677586C41008148 @default.
- W137677586 hasConceptScore W137677586C76155785 @default.
- W137677586 hasConceptScore W137677586C86803240 @default.
- W137677586 hasIssue "4" @default.
- W137677586 hasLocation W1376775861 @default.
- W137677586 hasOpenAccess W137677586 @default.
- W137677586 hasPrimaryLocation W1376775861 @default.
- W137677586 hasRelatedWork W1595332435 @default.
- W137677586 hasRelatedWork W1600748172 @default.
- W137677586 hasRelatedWork W1891829570 @default.
- W137677586 hasRelatedWork W1981355470 @default.
- W137677586 hasRelatedWork W2013925926 @default.
- W137677586 hasRelatedWork W2021108341 @default.
- W137677586 hasRelatedWork W2775521775 @default.
- W137677586 hasRelatedWork W4296764048 @default.
- W137677586 hasRelatedWork W4309805392 @default.
- W137677586 hasRelatedWork W4320032428 @default.
- W137677586 hasVolume "1" @default.
- W137677586 isParatext "false" @default.
- W137677586 isRetracted "false" @default.
- W137677586 magId "137677586" @default.
- W137677586 workType "article" @default.