Matches in SemOpenAlex for { <https://semopenalex.org/work/W138545805> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W138545805 endingPage "52" @default.
- W138545805 startingPage "34" @default.
- W138545805 abstract "Knowledge (information) granulation is one of the fundamental concepts of information processing leading to a new discipline called granular computing. One of the basic problems addressed by granular computing is the higher order granulation: how to collect basic information granules into a new granule. In the paper we address this problem by purely mathematical means using two well-established methodologies of information processing: near set theory and rough set theory. We start with the simple fact that the theory of near sets and the theory of rough sets share a common metric root. Since a probe function and an equivalence relation can be regarded as a pseudometric on U, in actual fact the underlying structure of both theories is a family of pseudometrics. The same starting point one can find in metric topology: an arbitrary family of pseudometrics is called a pregauge structure and when this family additionally separates all points, it is called a gauge structure. Pregauge structures characterise all completely regular spaces, whereas gauge structures correspond to all Hausdorff completely regular spaces (often called gauge spaces). In consequence, a perceptual system and an information system can be regarded as both pregauge structures and as topological completely regular spaces. A perceptual system or an approximation space does usually not separate all points and thus does not form a gauge space. Therefore in the paper we introduce the concept of a separating completion of a pregauge structure. This notion allows us to build a non-trivial topology on the set of perceptual elementary granules of a perceptual system (or an information system); in other words, a separating completion induces the higher order granulation. The completion requirement induces also a topology on a set of objects, which is locally homeomorphic to the the topology on basic information granules. Apart from topological results, we shall also discuss both topologies using category theory. A perceptual system may be actually enriched to an abelian group or a vector space, while unchanging the original granulation. It also gives rise to a quite rich sheaf of all real-valued functions preserving the basic granulation. Summing up, our aim is to build rich mathematical structures which do not change basic granulation and may be used to solve the problem of higher order granules." @default.
- W138545805 created "2016-06-24" @default.
- W138545805 creator A5062972545 @default.
- W138545805 date "2013-01-01" @default.
- W138545805 modified "2023-10-10" @default.
- W138545805 title "Granular Computing: Topological and Categorical Aspects of Near and Rough Set Approaches to Granulation of Knowledge" @default.
- W138545805 cites W1598275353 @default.
- W138545805 cites W1966699200 @default.
- W138545805 cites W2004759662 @default.
- W138545805 cites W2096768134 @default.
- W138545805 cites W2163326304 @default.
- W138545805 cites W33957596 @default.
- W138545805 cites W4232953319 @default.
- W138545805 cites W4255833381 @default.
- W138545805 cites W90286923 @default.
- W138545805 doi "https://doi.org/10.1007/978-3-642-36505-8_3" @default.
- W138545805 hasPublicationYear "2013" @default.
- W138545805 type Work @default.
- W138545805 sameAs 138545805 @default.
- W138545805 citedByCount "5" @default.
- W138545805 countsByYear W1385458052013 @default.
- W138545805 countsByYear W1385458052019 @default.
- W138545805 countsByYear W1385458052020 @default.
- W138545805 crossrefType "book-chapter" @default.
- W138545805 hasAuthorship W138545805A5062972545 @default.
- W138545805 hasConcept C111012933 @default.
- W138545805 hasConcept C114614502 @default.
- W138545805 hasConcept C154945302 @default.
- W138545805 hasConcept C156103551 @default.
- W138545805 hasConcept C17209119 @default.
- W138545805 hasConcept C184720557 @default.
- W138545805 hasConcept C198043062 @default.
- W138545805 hasConcept C202444582 @default.
- W138545805 hasConcept C33923547 @default.
- W138545805 hasConcept C41008148 @default.
- W138545805 hasConcept C80444323 @default.
- W138545805 hasConcept C81332173 @default.
- W138545805 hasConceptScore W138545805C111012933 @default.
- W138545805 hasConceptScore W138545805C114614502 @default.
- W138545805 hasConceptScore W138545805C154945302 @default.
- W138545805 hasConceptScore W138545805C156103551 @default.
- W138545805 hasConceptScore W138545805C17209119 @default.
- W138545805 hasConceptScore W138545805C184720557 @default.
- W138545805 hasConceptScore W138545805C198043062 @default.
- W138545805 hasConceptScore W138545805C202444582 @default.
- W138545805 hasConceptScore W138545805C33923547 @default.
- W138545805 hasConceptScore W138545805C41008148 @default.
- W138545805 hasConceptScore W138545805C80444323 @default.
- W138545805 hasConceptScore W138545805C81332173 @default.
- W138545805 hasLocation W1385458051 @default.
- W138545805 hasOpenAccess W138545805 @default.
- W138545805 hasPrimaryLocation W1385458051 @default.
- W138545805 hasRelatedWork W1495051301 @default.
- W138545805 hasRelatedWork W1970726137 @default.
- W138545805 hasRelatedWork W2367964367 @default.
- W138545805 hasRelatedWork W2381555525 @default.
- W138545805 hasRelatedWork W2385082087 @default.
- W138545805 hasRelatedWork W2389689794 @default.
- W138545805 hasRelatedWork W2766401420 @default.
- W138545805 hasRelatedWork W2978631811 @default.
- W138545805 hasRelatedWork W327654139 @default.
- W138545805 hasRelatedWork W4247436880 @default.
- W138545805 isParatext "false" @default.
- W138545805 isRetracted "false" @default.
- W138545805 magId "138545805" @default.
- W138545805 workType "book-chapter" @default.