Matches in SemOpenAlex for { <https://semopenalex.org/work/W138582014> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W138582014 abstract "Learning a Hierarchical Organization of Categories Steven Verheyen (steven.verheyen@psy.kuleuven.be) University of Leuven, Department of Psychology Tiensestraat 102, B-3000, Leuven Belgium Eef Ameel (eef.ameel@psy.kuleuven.be) University of Leuven, Department of Psychology Tiensestraat 102, B-3000, Leuven Belgium Timothy T. Rogers (ttrogers@wisc.edu) University of Wisconsin-Madison, Department of Psychology 1202 West Johnson Street, Madison, WI 15206 USA Gert Storms (gert.storms@psy.kuleuven.be) University of Leuven, Department of Psychology Tiensestraat 102, B-3000, Leuven Belgium models are even more rare (Estes, 1993; Palmeri, 1999). Thus the adequacy of such models to explain critical aspects of human category learning remains in question. Palmeri (1999) considered how vertical category learning might challenge the class of exemplar models. To see this, let us follow Palmeri in thinking about the issue within the context of a hierarchically organized category structure and by investigating the manner in which classification probabilities are computed in Medin and Schaffer’s context model (1978), the precursor of all current exemplar models. Let us assume that a particular set of stimuli belongs to category A, while a different set of stimuli belongs to a separate category B. Let us further assume that category A is comprised of two subordinate categories C and D. That is, each of the A stimuli also belongs either to C or to D. A similar hierarchical relationship holds between category B and subordinate categories E and F. According to the context model, the probability of assigning a particular stimulus to one of the specific categories (C, D, E, F) can never exceed the probability of classifying the stimulus in the specific category’s superordinate (A or B). More specifically, the context model proposes that evidence E X for classifying a stimulus in a particular category X is accumulated by summing the similarity of each of the category’s exemplars to the stimulus. Classification probability P(X) is then taken to be the ratio of the evidence E X to the evidence that the stimulus belongs to any of the categories at the abstraction level of the target category. The probability of classifying a stimulus in category A is written accordingly as: Abstract Although exemplar models of category learning have been successfully applied to a wide range of classification problems, such models have only rarely been tested on their ability to deal with vertical category learning, that is, cases where the same stimuli may be classified at multiple levels of abstraction. We report an experiment in which participants learned to classify artificial stimuli at both levels of a nested hierarchy and displayed more accurate classification of these items at the lower level of the hierarchy than at the more general level. Some authors have suggested that exemplar models would have great difficulty accounting for this phenomenon, but we show that the ALCOVE exemplar model effectively captures the behavioral pattern arising in the experiment. Despite suggestions to the contrary, superior performance at the lower level of a nested hierarchy does not necessarily invalidate the class of exemplar models. Keywords: context model; exemplar models; vertical category learning; hierarchies; basic-level effect. Introduction When developing and testing formal models of category learning, researchers have primarily relied upon experimental paradigms in which artificial stimuli need to be classified into one of several categories at the same level of abstraction. While the wealth of classification models currently available testifies to the fruitfulness of emphasizing what Rosch (1978) termed the horizontal dimension of categories, doubts remain about their usefulness when it comes to determining category membership at different levels of abstraction. Vertical relationships between categories, of the kind that exist between natural language categories such as bulldog, dog, mammal, and animal, have rarely been studied using traditional artificial category learning methods (see Lassaline, Wisniewski, & Medin, 1992; Mervis & Crisafi, 1982; and Murphy & Smith, 1982, for a few notable exceptions), and efforts to address such data with formal P(A) = E A / (E A + E B ), while the probability of appointing the stimulus to category C becomes: P(C) = E C / (E C + E D + E E + E F )." @default.
- W138582014 created "2016-06-24" @default.
- W138582014 creator A5020840610 @default.
- W138582014 creator A5026786948 @default.
- W138582014 creator A5041974222 @default.
- W138582014 creator A5059490000 @default.
- W138582014 date "2008-01-01" @default.
- W138582014 modified "2023-09-24" @default.
- W138582014 title "Learning a hierarchical organization of categories" @default.
- W138582014 cites W2006994840 @default.
- W138582014 cites W2007209561 @default.
- W138582014 cites W2009689310 @default.
- W138582014 cites W2018124860 @default.
- W138582014 cites W2018234095 @default.
- W138582014 cites W2026973491 @default.
- W138582014 cites W2059799772 @default.
- W138582014 cites W2086618114 @default.
- W138582014 cites W2092439775 @default.
- W138582014 cites W2142660513 @default.
- W138582014 cites W2152444902 @default.
- W138582014 cites W2221166931 @default.
- W138582014 cites W3035258717 @default.
- W138582014 cites W657474767 @default.
- W138582014 cites W945677950 @default.
- W138582014 hasPublicationYear "2008" @default.
- W138582014 type Work @default.
- W138582014 sameAs 138582014 @default.
- W138582014 citedByCount "2" @default.
- W138582014 countsByYear W1385820142013 @default.
- W138582014 crossrefType "journal-article" @default.
- W138582014 hasAuthorship W138582014A5020840610 @default.
- W138582014 hasAuthorship W138582014A5026786948 @default.
- W138582014 hasAuthorship W138582014A5041974222 @default.
- W138582014 hasAuthorship W138582014A5059490000 @default.
- W138582014 hasConcept C154945302 @default.
- W138582014 hasConcept C15744967 @default.
- W138582014 hasConcept C166957645 @default.
- W138582014 hasConcept C177264268 @default.
- W138582014 hasConcept C199360897 @default.
- W138582014 hasConcept C2779343474 @default.
- W138582014 hasConcept C41008148 @default.
- W138582014 hasConcept C94124525 @default.
- W138582014 hasConcept C95457728 @default.
- W138582014 hasConceptScore W138582014C154945302 @default.
- W138582014 hasConceptScore W138582014C15744967 @default.
- W138582014 hasConceptScore W138582014C166957645 @default.
- W138582014 hasConceptScore W138582014C177264268 @default.
- W138582014 hasConceptScore W138582014C199360897 @default.
- W138582014 hasConceptScore W138582014C2779343474 @default.
- W138582014 hasConceptScore W138582014C41008148 @default.
- W138582014 hasConceptScore W138582014C94124525 @default.
- W138582014 hasConceptScore W138582014C95457728 @default.
- W138582014 hasIssue "30" @default.
- W138582014 hasLocation W1385820141 @default.
- W138582014 hasOpenAccess W138582014 @default.
- W138582014 hasPrimaryLocation W1385820141 @default.
- W138582014 hasRelatedWork W113694692 @default.
- W138582014 hasRelatedWork W2003663929 @default.
- W138582014 hasRelatedWork W2009689310 @default.
- W138582014 hasRelatedWork W2092291497 @default.
- W138582014 hasRelatedWork W2098329082 @default.
- W138582014 hasRelatedWork W2163825195 @default.
- W138582014 hasRelatedWork W2379245051 @default.
- W138582014 hasRelatedWork W2399112610 @default.
- W138582014 hasRelatedWork W2523571579 @default.
- W138582014 hasRelatedWork W2564072317 @default.
- W138582014 hasRelatedWork W2583448109 @default.
- W138582014 hasRelatedWork W2586338924 @default.
- W138582014 hasRelatedWork W2587370305 @default.
- W138582014 hasRelatedWork W2590484290 @default.
- W138582014 hasRelatedWork W2593163656 @default.
- W138582014 hasRelatedWork W2767188632 @default.
- W138582014 hasRelatedWork W2767512750 @default.
- W138582014 hasRelatedWork W2767825521 @default.
- W138582014 hasRelatedWork W2770036471 @default.
- W138582014 hasRelatedWork W6168977 @default.
- W138582014 hasVolume "30" @default.
- W138582014 isParatext "false" @default.
- W138582014 isRetracted "false" @default.
- W138582014 magId "138582014" @default.
- W138582014 workType "article" @default.