Matches in SemOpenAlex for { <https://semopenalex.org/work/W139365993> ?p ?o ?g. }
- W139365993 abstract "This report presents a general model for exposure of terrestrial wildlife to contaminants (Sect. 2), methods for estimating parameters of the model (Sect. 3), species specific parameters for endpoint species on the Oak Ridge Reservation (ORR) (Sect. 4), and a sample application (Sect. 5). Exposure can be defined as the coincidence in both space and time of a receptor and a stressor, such that the receptor and stressor come into contact and interact (Risk Assessment Forum 1992). In the context of ecological risk assessment, receptors include all endpoint species or communities identified for a site [see Suter (1989) and Suter et al. (1994) for discussions of ecological endpoints for waste sites]. In the context of waste site assessments, stressors are chemical contaminations, and the contact and interaction are uptake of the contaminant by the receptor. Without sufficient exposure of the receptor to the contaminants, there is no ecological risk. Unlike some other endpoint assemblages, terrestrial wildlife are significantly exposed to contaminants in multiple media. They may drink or swim in contaminated water, ingest contaminated food and soil, and breath contaminated air. In addition, because most wildlife are mobile, moving among and within habitats, exposure is not restricted to a single location. They may integrate contamination from several spatially discrete sources. Therefore, exposure models for terrestrial wildlife must include multiple media. This document provides models and parameters for estimating exposure of birds and mammals. Reptiles and amphibians are not considered because few data exist with which to assess exposure to these organisms. In addition, because toxicological data are scarce for both classes, evaluation of the significance of exposure estimates is problematic. However, the general exposure estimation procedure developed herein for birds and mammals is applicable to reptiles and amphibians. Exposure models must be appropriate to the assessment endpoints. The models presented herein are models of the exposure of individual organisms, but except for threatened and endangered species, all the wildlife endpoints for the ORR are for populations (Suter et al. 1994). The use of organism exposures is appropriate because of the need to integrate exposure estimates with exposure-response information which is expressed as organism-level responses. The conversion of individual exposure to population effects occurs in the risk characterization. Conceptually, the conversion of organism-level exposures to the population level can be made in two ways. First, it may be assumed that there is a distinct population on the site so that the exposure of the population is the exposure of all the individuals. This assumption is appropriate for small organisms on large sites, particularly if the site constitutes a distinct habitat that is surrounded by inappropriate habitat. For example, a grassy site surrounded by forest or industrial development might support a distinct population of voles. The risks to that population can be estimated directly from the exposures of the individual organisms. Second, it may be assumed that a certain number of individuals are exposed to contaminants out of a larger population. For example, a certain proportion of a deer herd may forage on a site or a pair of hawks may hunt on a site. The estimated exposure of these individuals will result in estimation of certain effects on those individuals, and the resulting population risks will need to be characterized. In either case, the organism level exposure models are appropriate." @default.
- W139365993 created "2016-06-24" @default.
- W139365993 creator A5066124490 @default.
- W139365993 date "1994-01-01" @default.
- W139365993 modified "2023-10-02" @default.
- W139365993 title "Estimating Exposure of Terrestrial Wildlife to Contaminants" @default.
- W139365993 cites W101040629 @default.
- W139365993 cites W149520182 @default.
- W139365993 cites W1538577541 @default.
- W139365993 cites W1539026343 @default.
- W139365993 cites W1551650426 @default.
- W139365993 cites W1592802088 @default.
- W139365993 cites W183350879 @default.
- W139365993 cites W1892488232 @default.
- W139365993 cites W1964194595 @default.
- W139365993 cites W1965334424 @default.
- W139365993 cites W1972738081 @default.
- W139365993 cites W1972857007 @default.
- W139365993 cites W1975035818 @default.
- W139365993 cites W1975189575 @default.
- W139365993 cites W1975293129 @default.
- W139365993 cites W1975686490 @default.
- W139365993 cites W1985864846 @default.
- W139365993 cites W1988588531 @default.
- W139365993 cites W1990155842 @default.
- W139365993 cites W1992395479 @default.
- W139365993 cites W1994156989 @default.
- W139365993 cites W1995959237 @default.
- W139365993 cites W1996386463 @default.
- W139365993 cites W1998781513 @default.
- W139365993 cites W2005535178 @default.
- W139365993 cites W2011558320 @default.
- W139365993 cites W2015898866 @default.
- W139365993 cites W2018382755 @default.
- W139365993 cites W2023349899 @default.
- W139365993 cites W2024077055 @default.
- W139365993 cites W2030547671 @default.
- W139365993 cites W2030558044 @default.
- W139365993 cites W2034312274 @default.
- W139365993 cites W2052556612 @default.
- W139365993 cites W2054352078 @default.
- W139365993 cites W2059393277 @default.
- W139365993 cites W2068926710 @default.
- W139365993 cites W207222509 @default.
- W139365993 cites W2072689550 @default.
- W139365993 cites W2073685567 @default.
- W139365993 cites W2075311998 @default.
- W139365993 cites W2077607945 @default.
- W139365993 cites W2078900900 @default.
- W139365993 cites W2079087523 @default.
- W139365993 cites W2079828645 @default.
- W139365993 cites W2090455512 @default.
- W139365993 cites W2093816685 @default.
- W139365993 cites W2094960736 @default.
- W139365993 cites W2105683130 @default.
- W139365993 cites W2111694131 @default.
- W139365993 cites W2149615039 @default.
- W139365993 cites W2165209799 @default.
- W139365993 cites W2168583494 @default.
- W139365993 cites W2172113527 @default.
- W139365993 cites W2232756606 @default.
- W139365993 cites W2237587201 @default.
- W139365993 cites W2258231200 @default.
- W139365993 cites W2313360300 @default.
- W139365993 cites W2318486741 @default.
- W139365993 cites W2318652959 @default.
- W139365993 cites W2318765265 @default.
- W139365993 cites W2320705451 @default.
- W139365993 cites W2322186857 @default.
- W139365993 cites W2322690594 @default.
- W139365993 cites W2323525522 @default.
- W139365993 cites W2326804708 @default.
- W139365993 cites W2328073901 @default.
- W139365993 cites W2330652066 @default.
- W139365993 cites W2330695317 @default.
- W139365993 cites W2333278888 @default.
- W139365993 cites W2333503298 @default.
- W139365993 cites W2333862484 @default.
- W139365993 cites W2334667580 @default.
- W139365993 cites W2418625627 @default.
- W139365993 cites W2517083493 @default.
- W139365993 cites W270995004 @default.
- W139365993 cites W2895460943 @default.
- W139365993 cites W2946538232 @default.
- W139365993 cites W3206930807 @default.
- W139365993 cites W44129923 @default.
- W139365993 cites W652038595 @default.
- W139365993 cites W812938040 @default.
- W139365993 cites W84526342 @default.
- W139365993 cites W85334566 @default.
- W139365993 cites W1525195001 @default.
- W139365993 doi "https://doi.org/10.2172/814364" @default.
- W139365993 hasPublicationYear "1994" @default.
- W139365993 type Work @default.
- W139365993 sameAs 139365993 @default.
- W139365993 citedByCount "14" @default.
- W139365993 crossrefType "report" @default.
- W139365993 hasAuthorship W139365993A5066124490 @default.
- W139365993 hasBestOaLocation W1393659931 @default.
- W139365993 hasConcept C112570922 @default.