Matches in SemOpenAlex for { <https://semopenalex.org/work/W13961710> ?p ?o ?g. }
- W13961710 abstract "Nowadays, building automation and energy management systems provide an opportunity to collect vast amounts of building-related data (e.g., climatic data, building operational data, etc.). The data can provide abundant useful knowledge about the interactions between building energy consumption and its influencing factors. Such interactions play a crucial role in developing and implementing control strategies to improve building energy performance. However, the data is rarely analyzed and this useful knowledge is seldom extracted due to a lack of effective data analysis techniques.In this research, data mining (classification analysis, cluster analysis, and association rule mining) is proposed to extract hidden useful knowledge from building-related data. Moreover, a data analysis process and a data mining framework are proposed, enabling building-related data to be analyzed more efficiently. The applications of the process and framework to two sets of collected data demonstrate their applicability. Based on the process and framework, four data analysis methodologies were developed and applied to the collected data.Classification analysis was applied to develop a methodology for establishing building energy demand predictive models. To demonstrate its applicability, the methodology was applied to estimate residential building energy performance indexes by modeling building energy use intensity (EUI) levels (either high or low). The results demonstrate that the methodology can classify and predict the building energy demand levels with an accuracy of 93% for training data and 92% for test data, and identify and rank significant factors of building EUI automatically. Cluster analysis was used to develop a methodology for examining the influences of occupant behavior on building energy consumption. The results show that the methodology facilitates the evaluation of building energy-saving potential by improving the behavior of building occupants, and provides multifaceted insights into building energy end-use patterns associated with the occupant behavior. Association rule mining was employed to develop a methodology for examining all associations and correlations between building operational data, thereby discovering useful knowledge about energy conservation. The results show there are possibilities for saving energy by modifying the operation of mechanical ventilation systems and by repairing equipment. Cluster analysis, classification analysis, and association rule mining were combined to formulate a methodology for identifying and improving occupant behavior in buildings. The results show that the methodology was able to identify the behavior which needs to be modified, and provide occupants with feasible recommendations so that they can make required decisions to modify their behavior." @default.
- W13961710 created "2016-06-24" @default.
- W13961710 creator A5028345316 @default.
- W13961710 date "2012-01-09" @default.
- W13961710 modified "2023-09-27" @default.
- W13961710 title "Mining Hidden Knowledge from Measured Data for Improving Building Energy Performance" @default.
- W13961710 cites W1501135087 @default.
- W13961710 cites W1563436786 @default.
- W13961710 cites W1577818368 @default.
- W13961710 cites W1582248076 @default.
- W13961710 cites W1587157779 @default.
- W13961710 cites W1593249691 @default.
- W13961710 cites W1594031697 @default.
- W13961710 cites W1602316634 @default.
- W13961710 cites W1605275907 @default.
- W13961710 cites W1964940473 @default.
- W13961710 cites W1967379861 @default.
- W13961710 cites W1967533563 @default.
- W13961710 cites W1973693826 @default.
- W13961710 cites W1974208584 @default.
- W13961710 cites W1976499500 @default.
- W13961710 cites W1976679259 @default.
- W13961710 cites W1979228667 @default.
- W13961710 cites W1983368356 @default.
- W13961710 cites W1985596599 @default.
- W13961710 cites W1985803691 @default.
- W13961710 cites W1985885136 @default.
- W13961710 cites W1986636668 @default.
- W13961710 cites W1988017710 @default.
- W13961710 cites W1988434901 @default.
- W13961710 cites W1990139680 @default.
- W13961710 cites W1990596350 @default.
- W13961710 cites W1994423163 @default.
- W13961710 cites W1995875735 @default.
- W13961710 cites W1997923546 @default.
- W13961710 cites W1999089672 @default.
- W13961710 cites W2000164913 @default.
- W13961710 cites W2000548672 @default.
- W13961710 cites W2002699903 @default.
- W13961710 cites W2003389057 @default.
- W13961710 cites W2003745277 @default.
- W13961710 cites W2006710092 @default.
- W13961710 cites W2007212232 @default.
- W13961710 cites W2007472459 @default.
- W13961710 cites W2014674135 @default.
- W13961710 cites W2014697064 @default.
- W13961710 cites W2015489723 @default.
- W13961710 cites W2019988455 @default.
- W13961710 cites W2020549068 @default.
- W13961710 cites W2029425716 @default.
- W13961710 cites W2032846520 @default.
- W13961710 cites W2033435193 @default.
- W13961710 cites W2033449443 @default.
- W13961710 cites W2033802612 @default.
- W13961710 cites W2034142649 @default.
- W13961710 cites W2037095399 @default.
- W13961710 cites W2037794378 @default.
- W13961710 cites W2039873724 @default.
- W13961710 cites W2040011117 @default.
- W13961710 cites W2040661936 @default.
- W13961710 cites W2040736047 @default.
- W13961710 cites W2043658046 @default.
- W13961710 cites W2044620864 @default.
- W13961710 cites W2045801301 @default.
- W13961710 cites W2046758272 @default.
- W13961710 cites W2048327529 @default.
- W13961710 cites W2048842176 @default.
- W13961710 cites W2049249742 @default.
- W13961710 cites W2049421108 @default.
- W13961710 cites W2051224630 @default.
- W13961710 cites W2051935286 @default.
- W13961710 cites W2056277803 @default.
- W13961710 cites W2056648191 @default.
- W13961710 cites W2060927068 @default.
- W13961710 cites W2061088210 @default.
- W13961710 cites W2073412464 @default.
- W13961710 cites W2074404559 @default.
- W13961710 cites W2077314680 @default.
- W13961710 cites W2086792939 @default.
- W13961710 cites W2088321071 @default.
- W13961710 cites W2088664954 @default.
- W13961710 cites W2091406125 @default.
- W13961710 cites W2092215635 @default.
- W13961710 cites W2099764309 @default.
- W13961710 cites W2105695886 @default.
- W13961710 cites W2108032102 @default.
- W13961710 cites W2108152153 @default.
- W13961710 cites W2111528621 @default.
- W13961710 cites W2118054573 @default.
- W13961710 cites W2122974445 @default.
- W13961710 cites W2125055259 @default.
- W13961710 cites W2125909750 @default.
- W13961710 cites W2135893370 @default.
- W13961710 cites W2140190241 @default.
- W13961710 cites W2144763654 @default.
- W13961710 cites W2146777443 @default.
- W13961710 cites W2149706766 @default.
- W13961710 cites W2163121678 @default.
- W13961710 cites W2163680622 @default.
- W13961710 cites W2164709595 @default.