Matches in SemOpenAlex for { <https://semopenalex.org/work/W140019785> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W140019785 endingPage "564" @default.
- W140019785 startingPage "559" @default.
- W140019785 abstract "ABSTRACT This paper describes that actomyosin complex particles are automatically selected. We propose a new approach, which combines both gray level co-occurrence matrix to extract texture features and SVM classifier to detect actomyosin complex particles automatically. Experimental results show that detection rate achieves 93.58%, the false positive rate is 3.66%, and the area under the ROC curve (AUC) is 0.9645. KEYWORDS Gray level co-occurrence matrix, support vector machine, actomyosin complex 1. INTRODUCTION Myosin is to exist in muscle and non-muscle tissue. About 50% of the protein in a muscle cell is myosin, about 30% of myosin are bound to action (Molecular motors, 2002). Myosin is the best studies molecular motor. Due to one want to understand how myosin produces force, it is necessary to visualize the structure of myosin. Information on the myosin bound to actin can be obtained using Cryo-EM. Investigators can see that the views of large scale conformational changes in the actomyosin comparison of 3D reconstruction. The information contributed to the understanding the force production and its function. EOS (Extensible and Object-oriented System) is a group of small tools include three-dimensional reconstruction of macromolecules (Takuo Y. et al, 1996). The single particle analysis has been widely used for 3D reconstruction of large molecular complexes from Cryo-EM image. Owing to the low signal to noise ratio in Cryo-EM images, one will require a hundreds of thousands or even million of high resolution particles, which make it impractical to manually pick the particles. The current main method is: Template-matching, edge detection, intensity comparison, texture analysis, neural network, and feature-based approach, etc. For classification algorithm, several machine learning algorithms have been used to classify protein particle datasets, in which include k-nearest neighbor, decision trees, Fisher linear discriminant analysis, Bayesian networks, neural networks, and SVM. For particle analysis, the particle selection is critical and become a bottleneck in high the resolution structure determination of macromolecules using Cryo-EM. This is an unresolved challenging problem. This demands development of fast and accurate detection algorithm (Yuanxin Z. et al, 2004). Such as Yongyi Yang et al. proposed SVM approach for detection for microcalcifications (Yongyi Yang, et al, 2002); Zeyun Yun et al. proposed feature extraction from the edge map (Zeyun Y, et al, 2004); Roseman, A.M., proposed particle finding using a fast local correlation algorithm (Roseman A. et al, 2003), and Zhu,Y. et al. proposed fast detection of generic biological particles (Zhu Y. et al, 2002). These algorithms can achieve over 90% detecting rate (Furey T., et al, 2000 and XU., et al, 2003), the false positive rate ranging from 15- 30%, and the lowest false positive rate is 4.5% (Yuanxin Z. et al, 2004). Our detecting rate achieved 93.58%, and the false positive rate is 3.66%. SVM can handle large feature space, can effectively avoid over fitting by controlling the margin, and can automatically identify a small subset. SVM is being increasingly used for solving biological problems, including colonography detection (Anna K. et al, 2003), protein analysis (Y.F.Sun, et al, 2003), and genetic" @default.
- W140019785 created "2016-06-24" @default.
- W140019785 creator A5005666034 @default.
- W140019785 creator A5010437713 @default.
- W140019785 creator A5035463618 @default.
- W140019785 date "2005-01-01" @default.
- W140019785 modified "2023-09-23" @default.
- W140019785 title "AUTOMATIC ACTOMYOSIN COMPLEX SELECTION USING SVM" @default.
- W140019785 cites W1888645892 @default.
- W140019785 cites W1963686561 @default.
- W140019785 cites W2019210163 @default.
- W140019785 cites W2027208406 @default.
- W140019785 cites W2034279806 @default.
- W140019785 cites W2042811802 @default.
- W140019785 cites W2059432853 @default.
- W140019785 cites W2108728387 @default.
- W140019785 cites W2117223426 @default.
- W140019785 cites W2126408091 @default.
- W140019785 cites W2133199783 @default.
- W140019785 cites W2133458583 @default.
- W140019785 hasPublicationYear "2005" @default.
- W140019785 type Work @default.
- W140019785 sameAs 140019785 @default.
- W140019785 citedByCount "0" @default.
- W140019785 crossrefType "journal-article" @default.
- W140019785 hasAuthorship W140019785A5005666034 @default.
- W140019785 hasAuthorship W140019785A5010437713 @default.
- W140019785 hasAuthorship W140019785A5035463618 @default.
- W140019785 hasConcept C12267149 @default.
- W140019785 hasConcept C12554922 @default.
- W140019785 hasConcept C125705527 @default.
- W140019785 hasConcept C153180895 @default.
- W140019785 hasConcept C154945302 @default.
- W140019785 hasConcept C15954220 @default.
- W140019785 hasConcept C160408235 @default.
- W140019785 hasConcept C185592680 @default.
- W140019785 hasConcept C186060115 @default.
- W140019785 hasConcept C41008148 @default.
- W140019785 hasConcept C55493867 @default.
- W140019785 hasConcept C6997183 @default.
- W140019785 hasConcept C8035138 @default.
- W140019785 hasConcept C86803240 @default.
- W140019785 hasConceptScore W140019785C12267149 @default.
- W140019785 hasConceptScore W140019785C12554922 @default.
- W140019785 hasConceptScore W140019785C125705527 @default.
- W140019785 hasConceptScore W140019785C153180895 @default.
- W140019785 hasConceptScore W140019785C154945302 @default.
- W140019785 hasConceptScore W140019785C15954220 @default.
- W140019785 hasConceptScore W140019785C160408235 @default.
- W140019785 hasConceptScore W140019785C185592680 @default.
- W140019785 hasConceptScore W140019785C186060115 @default.
- W140019785 hasConceptScore W140019785C41008148 @default.
- W140019785 hasConceptScore W140019785C55493867 @default.
- W140019785 hasConceptScore W140019785C6997183 @default.
- W140019785 hasConceptScore W140019785C8035138 @default.
- W140019785 hasConceptScore W140019785C86803240 @default.
- W140019785 hasLocation W1400197851 @default.
- W140019785 hasOpenAccess W140019785 @default.
- W140019785 hasPrimaryLocation W1400197851 @default.
- W140019785 hasRelatedWork W2063361414 @default.
- W140019785 hasRelatedWork W2074678444 @default.
- W140019785 hasRelatedWork W2125919294 @default.
- W140019785 hasRelatedWork W2135940344 @default.
- W140019785 hasRelatedWork W2170524533 @default.
- W140019785 hasRelatedWork W228527914 @default.
- W140019785 hasRelatedWork W240764945 @default.
- W140019785 hasRelatedWork W2588021381 @default.
- W140019785 hasRelatedWork W2774674155 @default.
- W140019785 hasRelatedWork W2803475843 @default.
- W140019785 hasRelatedWork W2897100032 @default.
- W140019785 hasRelatedWork W2952570810 @default.
- W140019785 hasRelatedWork W3021011198 @default.
- W140019785 hasRelatedWork W3114559164 @default.
- W140019785 hasRelatedWork W3125864926 @default.
- W140019785 hasRelatedWork W3127693268 @default.
- W140019785 hasRelatedWork W3207442322 @default.
- W140019785 hasRelatedWork W579153682 @default.
- W140019785 hasRelatedWork W2505668962 @default.
- W140019785 hasRelatedWork W2987336865 @default.
- W140019785 isParatext "false" @default.
- W140019785 isRetracted "false" @default.
- W140019785 magId "140019785" @default.
- W140019785 workType "article" @default.