Matches in SemOpenAlex for { <https://semopenalex.org/work/W1408639475> ?p ?o ?g. }
- W1408639475 endingPage "1040" @default.
- W1408639475 startingPage "1033" @default.
- W1408639475 abstract "In this work we resolve the long-outstanding problem of how to effectively train recurrent neural networks (RNNs) on complex and difficult sequence modeling problems which may contain long-term data dependencies. Utilizing recent advances in the Hessian-free optimization approach (Martens, 2010), together with a novel damping scheme, we successfully train RNNs on two sets of challenging problems. First, a collection of pathological synthetic datasets which are known to be impossible for standard optimization approaches (due to their extremely long-term dependencies), and second, on three natural and highly complex real-world sequence datasets where we find that our method significantly outperforms the previous state-of-the-art method for training neural sequence models: the Long Short-term Memory approach of Hochreiter and Schmidhuber (1997). Additionally, we offer a new interpretation of the generalized Gauss-Newton matrix of Schraudolph (2002) which is used within the HF approach of Martens." @default.
- W1408639475 created "2016-06-24" @default.
- W1408639475 creator A5006446297 @default.
- W1408639475 creator A5046229829 @default.
- W1408639475 date "2011-06-28" @default.
- W1408639475 modified "2023-10-03" @default.
- W1408639475 title "Learning Recurrent Neural Networks with Hessian-Free Optimization" @default.
- W1408639475 cites W1498436455 @default.
- W1408639475 cites W1964502429 @default.
- W1408639475 cites W196761320 @default.
- W1408639475 cites W2006903949 @default.
- W1408639475 cites W2064675550 @default.
- W1408639475 cites W2079735306 @default.
- W1408639475 cites W2100495367 @default.
- W1408639475 cites W2107878631 @default.
- W1408639475 cites W2110575115 @default.
- W1408639475 cites W2118706537 @default.
- W1408639475 cites W2130984546 @default.
- W1408639475 cites W2136848157 @default.
- W1408639475 cites W2170942820 @default.
- W1408639475 cites W3029645440 @default.
- W1408639475 cites W194249466 @default.
- W1408639475 cites W3023071679 @default.
- W1408639475 hasPublicationYear "2011" @default.
- W1408639475 type Work @default.
- W1408639475 sameAs 1408639475 @default.
- W1408639475 citedByCount "253" @default.
- W1408639475 countsByYear W14086394752012 @default.
- W1408639475 countsByYear W14086394752013 @default.
- W1408639475 countsByYear W14086394752014 @default.
- W1408639475 countsByYear W14086394752015 @default.
- W1408639475 countsByYear W14086394752016 @default.
- W1408639475 countsByYear W14086394752017 @default.
- W1408639475 countsByYear W14086394752018 @default.
- W1408639475 countsByYear W14086394752019 @default.
- W1408639475 countsByYear W14086394752020 @default.
- W1408639475 countsByYear W14086394752021 @default.
- W1408639475 crossrefType "proceedings-article" @default.
- W1408639475 hasAuthorship W1408639475A5006446297 @default.
- W1408639475 hasAuthorship W1408639475A5046229829 @default.
- W1408639475 hasConcept C11413529 @default.
- W1408639475 hasConcept C121332964 @default.
- W1408639475 hasConcept C134306372 @default.
- W1408639475 hasConcept C137836250 @default.
- W1408639475 hasConcept C147168706 @default.
- W1408639475 hasConcept C154945302 @default.
- W1408639475 hasConcept C199360897 @default.
- W1408639475 hasConcept C203616005 @default.
- W1408639475 hasConcept C2778112365 @default.
- W1408639475 hasConcept C28826006 @default.
- W1408639475 hasConcept C33923547 @default.
- W1408639475 hasConcept C41008148 @default.
- W1408639475 hasConcept C50644808 @default.
- W1408639475 hasConcept C527412718 @default.
- W1408639475 hasConcept C54355233 @default.
- W1408639475 hasConcept C61797465 @default.
- W1408639475 hasConcept C62520636 @default.
- W1408639475 hasConcept C77618280 @default.
- W1408639475 hasConcept C86803240 @default.
- W1408639475 hasConceptScore W1408639475C11413529 @default.
- W1408639475 hasConceptScore W1408639475C121332964 @default.
- W1408639475 hasConceptScore W1408639475C134306372 @default.
- W1408639475 hasConceptScore W1408639475C137836250 @default.
- W1408639475 hasConceptScore W1408639475C147168706 @default.
- W1408639475 hasConceptScore W1408639475C154945302 @default.
- W1408639475 hasConceptScore W1408639475C199360897 @default.
- W1408639475 hasConceptScore W1408639475C203616005 @default.
- W1408639475 hasConceptScore W1408639475C2778112365 @default.
- W1408639475 hasConceptScore W1408639475C28826006 @default.
- W1408639475 hasConceptScore W1408639475C33923547 @default.
- W1408639475 hasConceptScore W1408639475C41008148 @default.
- W1408639475 hasConceptScore W1408639475C50644808 @default.
- W1408639475 hasConceptScore W1408639475C527412718 @default.
- W1408639475 hasConceptScore W1408639475C54355233 @default.
- W1408639475 hasConceptScore W1408639475C61797465 @default.
- W1408639475 hasConceptScore W1408639475C62520636 @default.
- W1408639475 hasConceptScore W1408639475C77618280 @default.
- W1408639475 hasConceptScore W1408639475C86803240 @default.
- W1408639475 hasLocation W14086394751 @default.
- W1408639475 hasOpenAccess W1408639475 @default.
- W1408639475 hasPrimaryLocation W14086394751 @default.
- W1408639475 hasRelatedWork W104184427 @default.
- W1408639475 hasRelatedWork W1498436455 @default.
- W1408639475 hasRelatedWork W1810943226 @default.
- W1408639475 hasRelatedWork W1815076433 @default.
- W1408639475 hasRelatedWork W196214544 @default.
- W1408639475 hasRelatedWork W196761320 @default.
- W1408639475 hasRelatedWork W2064675550 @default.
- W1408639475 hasRelatedWork W2100495367 @default.
- W1408639475 hasRelatedWork W2103179919 @default.
- W1408639475 hasRelatedWork W2107878631 @default.
- W1408639475 hasRelatedWork W2110485445 @default.
- W1408639475 hasRelatedWork W2112796928 @default.
- W1408639475 hasRelatedWork W2118706537 @default.
- W1408639475 hasRelatedWork W2136922672 @default.
- W1408639475 hasRelatedWork W2143267104 @default.
- W1408639475 hasRelatedWork W2143612262 @default.
- W1408639475 hasRelatedWork W2144380653 @default.