Matches in SemOpenAlex for { <https://semopenalex.org/work/W141971525> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W141971525 endingPage "384" @default.
- W141971525 startingPage "373" @default.
- W141971525 abstract "Orthogonal ray graphs are the intersection graphs of horizontal and vertical rays (i.e. half-lines) in the plane. If the rays can have any possible orientation (left/right/up/down) then the graph is a 4-directional orthogonal ray graph (4-DORG). Otherwise, if all rays are only pointing into the positive x and y directions, the intersection graph is a 2-DORG. Similarly, for 3-DORGs, the horizontal rays can have any direction but the vertical ones can only have the positive direction. The recognition problem of 2-DORGs, which are a nice subclass of bipartite comparability graphs, is known to be polynomial, while the recognition problems for 3-DORGs and 4-DORGs are open. Recently it has been shown that the recognition of unit grid intersection graphs, a superclass of 4-DORGs, is NP-complete. In this paper we prove that the recognition problem of 4-DORGs is polynomial, given a partition {L,R,U,D} of the vertices of G (which corresponds to the four possible ray directions). For the proof, given the graph G, we first construct two cliques G 1,G 2 with both directed and undirected edges. Then we successively augment these two graphs, constructing eventually a graph $widetilde{G}$ with both directed and undirected edges, such that G has a 4-DORG representation if and only if $widetilde{G}$ has a transitive orientation respecting its directed edges. As a crucial tool for our analysis we introduce the notion of an S-orientation of a graph, which extends the notion of a transitive orientation. We expect that our proof ideas will be useful also in other situations. Using an independent approach we show that, given a permutation π of the vertices of U (π is the order of y-coordinates of ray endpoints for U), while the partition {L,R} of V ∖ U is not given, we can still efficiently check whether G has a 3-DORG representation." @default.
- W141971525 created "2016-06-24" @default.
- W141971525 creator A5005468020 @default.
- W141971525 creator A5018078197 @default.
- W141971525 creator A5023231566 @default.
- W141971525 date "2013-01-01" @default.
- W141971525 modified "2023-10-02" @default.
- W141971525 title "On the Recognition of Four-Directional Orthogonal Ray Graphs" @default.
- W141971525 cites W1553648594 @default.
- W141971525 cites W1580300251 @default.
- W141971525 cites W1822087134 @default.
- W141971525 cites W1966570140 @default.
- W141971525 cites W1973275449 @default.
- W141971525 cites W1974972093 @default.
- W141971525 cites W1979682819 @default.
- W141971525 cites W1979740015 @default.
- W141971525 cites W1986885294 @default.
- W141971525 cites W1988129297 @default.
- W141971525 cites W2006753964 @default.
- W141971525 cites W2007752258 @default.
- W141971525 cites W2033470072 @default.
- W141971525 cites W2050858323 @default.
- W141971525 cites W2062584330 @default.
- W141971525 cites W2085486788 @default.
- W141971525 cites W2134272545 @default.
- W141971525 cites W2152706 @default.
- W141971525 cites W2152917939 @default.
- W141971525 cites W4319782100 @default.
- W141971525 doi "https://doi.org/10.1007/978-3-642-40313-2_34" @default.
- W141971525 hasPublicationYear "2013" @default.
- W141971525 type Work @default.
- W141971525 sameAs 141971525 @default.
- W141971525 citedByCount "7" @default.
- W141971525 countsByYear W1419715252014 @default.
- W141971525 countsByYear W1419715252018 @default.
- W141971525 crossrefType "book-chapter" @default.
- W141971525 hasAuthorship W141971525A5005468020 @default.
- W141971525 hasAuthorship W141971525A5018078197 @default.
- W141971525 hasAuthorship W141971525A5023231566 @default.
- W141971525 hasBestOaLocation W1419715252 @default.
- W141971525 hasConcept C114614502 @default.
- W141971525 hasConcept C118615104 @default.
- W141971525 hasConcept C132525143 @default.
- W141971525 hasConcept C197657726 @default.
- W141971525 hasConcept C203776342 @default.
- W141971525 hasConcept C33923547 @default.
- W141971525 hasConcept C41008148 @default.
- W141971525 hasConcept C54540088 @default.
- W141971525 hasConceptScore W141971525C114614502 @default.
- W141971525 hasConceptScore W141971525C118615104 @default.
- W141971525 hasConceptScore W141971525C132525143 @default.
- W141971525 hasConceptScore W141971525C197657726 @default.
- W141971525 hasConceptScore W141971525C203776342 @default.
- W141971525 hasConceptScore W141971525C33923547 @default.
- W141971525 hasConceptScore W141971525C41008148 @default.
- W141971525 hasConceptScore W141971525C54540088 @default.
- W141971525 hasLocation W1419715251 @default.
- W141971525 hasLocation W1419715252 @default.
- W141971525 hasLocation W1419715253 @default.
- W141971525 hasLocation W1419715254 @default.
- W141971525 hasOpenAccess W141971525 @default.
- W141971525 hasPrimaryLocation W1419715251 @default.
- W141971525 hasRelatedWork W1500336836 @default.
- W141971525 hasRelatedWork W2146689185 @default.
- W141971525 hasRelatedWork W2396667330 @default.
- W141971525 hasRelatedWork W2949846068 @default.
- W141971525 hasRelatedWork W2950236379 @default.
- W141971525 hasRelatedWork W2951262621 @default.
- W141971525 hasRelatedWork W2963631220 @default.
- W141971525 hasRelatedWork W3029390739 @default.
- W141971525 hasRelatedWork W4214604286 @default.
- W141971525 hasRelatedWork W4287773996 @default.
- W141971525 isParatext "false" @default.
- W141971525 isRetracted "false" @default.
- W141971525 magId "141971525" @default.
- W141971525 workType "book-chapter" @default.