Matches in SemOpenAlex for { <https://semopenalex.org/work/W14214372> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W14214372 endingPage "1222" @default.
- W14214372 startingPage "1217" @default.
- W14214372 abstract "Abstract In this paper, we show that any circular density can be closely approximated byan exponential family of distributions. Therefore we propose an exponential familyof distributions as a new family of circular distributions, which is absolutely suitableto model any shape of circular distributions. In this family of circular distributions,the trigonometric moments are found to be the uniformly minimum variance unbiasedestimators (UMVUEs) of the parameters of distribution. Simulation result and good-ness of t test using an asymmetric real data set show usefulness of the novel circulardistribution.Keywords: Approximation, circular distribution, trigonometric polynomial, uniformlyminimum variance unbiased estimator. 1. Introduction Circular random variables are found in various areas of research such as biology, medicine,just to name a few. Because of the periodic nature of a circular variable, it is necessaryto use a circular distribution to model a circular variable. Up to date, there are so manycircular distributions available in literatures and books. Some of them are exible enoughto model asymmetric or multimodal circular distributions. For various types of circulardistribution, including von Mises (VM) or circular normal distribution, the readers can referto Jammalamadaka and SenGupta (2001).The circular normal distribution, which is symmetric, has been mainly used to model acircular random variable. However, circular distributions are rarely symmetric, i.e. they areusually asymmetric and even multi-modal. Therefore, the VM distribution is not suitableto model such a data set. In fact, this is also the case in linear statistical analysis (Arnoldand Beaver, 2000; Azzalini, 1985) that the normal distribution is often not suitable. Oneway to model an asymmetric and multimodal distribution is using a mixture of von Misesdistributions (Batschelet, 1981). Another model suitable for an aymmetric and/or multi-modal circular distribution is based on nonnegative trigonometric sums (Fernandez-Duran,2004). Other existing asymmetric and/or bimodal circular distributions are appeared inJammadamalaka and Kozubowski (2004), Getto and Jammalamadaka (2007), and Umbachand Jammalamadaka (2009)." @default.
- W14214372 created "2016-06-24" @default.
- W14214372 creator A5047679942 @default.
- W14214372 date "2011-01-01" @default.
- W14214372 modified "2023-10-16" @default.
- W14214372 title "Exponential family of circular distributions" @default.
- W14214372 cites W1976903303 @default.
- W14214372 cites W1986519731 @default.
- W14214372 cites W1990232891 @default.
- W14214372 cites W2006025735 @default.
- W14214372 cites W2011484769 @default.
- W14214372 cites W2029278515 @default.
- W14214372 cites W2036867675 @default.
- W14214372 cites W2119551902 @default.
- W14214372 cites W2124895657 @default.
- W14214372 cites W2130612058 @default.
- W14214372 cites W2332483470 @default.
- W14214372 cites W2796985193 @default.
- W14214372 cites W2799002609 @default.
- W14214372 cites W94194614 @default.
- W14214372 cites W96390954 @default.
- W14214372 hasPublicationYear "2011" @default.
- W14214372 type Work @default.
- W14214372 sameAs 14214372 @default.
- W14214372 citedByCount "1" @default.
- W14214372 countsByYear W142143722012 @default.
- W14214372 crossrefType "journal-article" @default.
- W14214372 hasAuthorship W14214372A5047679942 @default.
- W14214372 hasConcept C105795698 @default.
- W14214372 hasConcept C110121322 @default.
- W14214372 hasConcept C121332964 @default.
- W14214372 hasConcept C122123141 @default.
- W14214372 hasConcept C134306372 @default.
- W14214372 hasConcept C135628077 @default.
- W14214372 hasConcept C155165730 @default.
- W14214372 hasConcept C198138136 @default.
- W14214372 hasConcept C33923547 @default.
- W14214372 hasConcept C55974624 @default.
- W14214372 hasConcept C97355855 @default.
- W14214372 hasConceptScore W14214372C105795698 @default.
- W14214372 hasConceptScore W14214372C110121322 @default.
- W14214372 hasConceptScore W14214372C121332964 @default.
- W14214372 hasConceptScore W14214372C122123141 @default.
- W14214372 hasConceptScore W14214372C134306372 @default.
- W14214372 hasConceptScore W14214372C135628077 @default.
- W14214372 hasConceptScore W14214372C155165730 @default.
- W14214372 hasConceptScore W14214372C198138136 @default.
- W14214372 hasConceptScore W14214372C33923547 @default.
- W14214372 hasConceptScore W14214372C55974624 @default.
- W14214372 hasConceptScore W14214372C97355855 @default.
- W14214372 hasIssue "6" @default.
- W14214372 hasLocation W142143721 @default.
- W14214372 hasOpenAccess W14214372 @default.
- W14214372 hasPrimaryLocation W142143721 @default.
- W14214372 hasRelatedWork W1489410997 @default.
- W14214372 hasRelatedWork W1967774327 @default.
- W14214372 hasRelatedWork W1973111189 @default.
- W14214372 hasRelatedWork W2013267875 @default.
- W14214372 hasRelatedWork W2014848196 @default.
- W14214372 hasRelatedWork W2026427461 @default.
- W14214372 hasRelatedWork W2039064584 @default.
- W14214372 hasRelatedWork W2051956009 @default.
- W14214372 hasRelatedWork W2056481674 @default.
- W14214372 hasRelatedWork W2058468336 @default.
- W14214372 hasRelatedWork W2058659259 @default.
- W14214372 hasRelatedWork W2083110534 @default.
- W14214372 hasRelatedWork W2087316977 @default.
- W14214372 hasRelatedWork W2153655877 @default.
- W14214372 hasRelatedWork W2243951597 @default.
- W14214372 hasRelatedWork W2912982474 @default.
- W14214372 hasRelatedWork W3156216539 @default.
- W14214372 hasRelatedWork W3170653905 @default.
- W14214372 hasRelatedWork W3196103859 @default.
- W14214372 hasRelatedWork W2512095724 @default.
- W14214372 hasVolume "22" @default.
- W14214372 isParatext "false" @default.
- W14214372 isRetracted "false" @default.
- W14214372 magId "14214372" @default.
- W14214372 workType "article" @default.