Matches in SemOpenAlex for { <https://semopenalex.org/work/W142386680> ?p ?o ?g. }
- W142386680 abstract "Condition based maintenance (CBM) aims to schedule maintenance activities based on condition monitoring data in order to lower the overall maintenance costs and prevent unexpected failures. Effective CBM can lead to reduced downtime, less inventory, reduced maintenance costs, reliable operation and safety of entire system. The key challenge in achieving effective CBM is the accurate prediction of equipment future health condition and thus the remaining useful life. Existing prognostics methods mainly focus on constant loading conditions. However, in many applications, such as some wind turbine, transmission and engine applications, the load that the equipment is subject to changes over time. It is critical to incorporate the changing load in order to produce more accurate prognostics methods. This research is focused on the bearing prognostics, which are key mechanical components in rotary machines, supporting the entire load imposed on machines. Failure of these components can stop the operation due to machine down time, thus resulting in financial losses, which are much higher than the cost of bearing. In this thesis, an artificial neural network (ANN) based method is proposed for equipment health condition prediction under time varying conditions. The proposed method can be applied to bearing as well as other components under condition monitoring. In the proposed ANN model, in addition to using the age and condition monitoring measurement values as an inputs, a new input neuron is introduced to incorporate the varying loading condition. The output of the ANN model is accumulated life percentage, based on which the remaining useful life can be calculated once the ANN is trained. Two sets of simulated degradation data under time varying load are used to demonstrate the effectiveness of the proposed ANN method, and the results show that fairly accurate prediction can be achieved using the proposed method. The other key contribution of this thesis is the experiment validation of the proposed ANN prediction method. The Bearing Prognostics Simulator, after extensive adjustment and tuning, is used to perform bearing run-to-failure test under different loading conditions. Vibration signals are collected using the data acquisition system and the Labview software. The root mean square (RMS) measurement of the vibration signals is used as the condition monitoring input for the validation of the proposed ANN prediction method. Two bearing failure histories are used to train the ANN model and test its prediction performance. The results demonstrate the effectiveness of the proposed method in dealing with real-world condition monitoring data for health condition prediction. The proposed model can greatly benefit industry as well as academia in condition based maintenance of rotary machines." @default.
- W142386680 created "2016-06-24" @default.
- W142386680 creator A5009282836 @default.
- W142386680 date "2010-01-01" @default.
- W142386680 modified "2023-09-28" @default.
- W142386680 title "Bearing prognostics using neural network under time varying conditions" @default.
- W142386680 cites W1539592559 @default.
- W142386680 cites W1936206461 @default.
- W142386680 cites W1976146618 @default.
- W142386680 cites W2017594114 @default.
- W142386680 cites W2025387494 @default.
- W142386680 cites W2025759700 @default.
- W142386680 cites W2025977267 @default.
- W142386680 cites W2028927556 @default.
- W142386680 cites W2043151330 @default.
- W142386680 cites W2046838898 @default.
- W142386680 cites W2051861458 @default.
- W142386680 cites W2052006079 @default.
- W142386680 cites W2052082282 @default.
- W142386680 cites W2056463181 @default.
- W142386680 cites W2061267743 @default.
- W142386680 cites W2070182990 @default.
- W142386680 cites W2096378276 @default.
- W142386680 cites W2098608159 @default.
- W142386680 cites W2103102504 @default.
- W142386680 cites W2107776973 @default.
- W142386680 cites W2110007571 @default.
- W142386680 cites W2112841480 @default.
- W142386680 cites W2114106396 @default.
- W142386680 cites W2132658574 @default.
- W142386680 cites W2134559906 @default.
- W142386680 cites W2139177900 @default.
- W142386680 cites W2149085718 @default.
- W142386680 cites W2163283233 @default.
- W142386680 cites W2387929676 @default.
- W142386680 cites W3023732739 @default.
- W142386680 hasPublicationYear "2010" @default.
- W142386680 type Work @default.
- W142386680 sameAs 142386680 @default.
- W142386680 citedByCount "0" @default.
- W142386680 crossrefType "dissertation" @default.
- W142386680 hasAuthorship W142386680A5009282836 @default.
- W142386680 hasConcept C111919701 @default.
- W142386680 hasConcept C119599485 @default.
- W142386680 hasConcept C127413603 @default.
- W142386680 hasConcept C129364497 @default.
- W142386680 hasConcept C154945302 @default.
- W142386680 hasConcept C171146098 @default.
- W142386680 hasConcept C180591934 @default.
- W142386680 hasConcept C199978012 @default.
- W142386680 hasConcept C200601418 @default.
- W142386680 hasConcept C2775846686 @default.
- W142386680 hasConcept C2776907094 @default.
- W142386680 hasConcept C2778449969 @default.
- W142386680 hasConcept C2778814095 @default.
- W142386680 hasConcept C41008148 @default.
- W142386680 hasConcept C50644808 @default.
- W142386680 hasConcept C68387754 @default.
- W142386680 hasConcept C70452415 @default.
- W142386680 hasConcept C78519656 @default.
- W142386680 hasConceptScore W142386680C111919701 @default.
- W142386680 hasConceptScore W142386680C119599485 @default.
- W142386680 hasConceptScore W142386680C127413603 @default.
- W142386680 hasConceptScore W142386680C129364497 @default.
- W142386680 hasConceptScore W142386680C154945302 @default.
- W142386680 hasConceptScore W142386680C171146098 @default.
- W142386680 hasConceptScore W142386680C180591934 @default.
- W142386680 hasConceptScore W142386680C199978012 @default.
- W142386680 hasConceptScore W142386680C200601418 @default.
- W142386680 hasConceptScore W142386680C2775846686 @default.
- W142386680 hasConceptScore W142386680C2776907094 @default.
- W142386680 hasConceptScore W142386680C2778449969 @default.
- W142386680 hasConceptScore W142386680C2778814095 @default.
- W142386680 hasConceptScore W142386680C41008148 @default.
- W142386680 hasConceptScore W142386680C50644808 @default.
- W142386680 hasConceptScore W142386680C68387754 @default.
- W142386680 hasConceptScore W142386680C70452415 @default.
- W142386680 hasConceptScore W142386680C78519656 @default.
- W142386680 hasLocation W1423866801 @default.
- W142386680 hasOpenAccess W142386680 @default.
- W142386680 hasPrimaryLocation W1423866801 @default.
- W142386680 hasRelatedWork W152354284 @default.
- W142386680 hasRelatedWork W1983053770 @default.
- W142386680 hasRelatedWork W1984571226 @default.
- W142386680 hasRelatedWork W2027442485 @default.
- W142386680 hasRelatedWork W2043779128 @default.
- W142386680 hasRelatedWork W2116091176 @default.
- W142386680 hasRelatedWork W2136774956 @default.
- W142386680 hasRelatedWork W2766688321 @default.
- W142386680 hasRelatedWork W2766779209 @default.
- W142386680 hasRelatedWork W2775330644 @default.
- W142386680 hasRelatedWork W2786121524 @default.
- W142386680 hasRelatedWork W2792795991 @default.
- W142386680 hasRelatedWork W2900380997 @default.
- W142386680 hasRelatedWork W2903571190 @default.
- W142386680 hasRelatedWork W2960714314 @default.
- W142386680 hasRelatedWork W2975404005 @default.
- W142386680 hasRelatedWork W2999599202 @default.
- W142386680 hasRelatedWork W3000986292 @default.
- W142386680 hasRelatedWork W3037872117 @default.