Matches in SemOpenAlex for { <https://semopenalex.org/work/W1425595655> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W1425595655 endingPage "180" @default.
- W1425595655 startingPage "167" @default.
- W1425595655 abstract "Pattern recognition is one of principle problems in computer science. Many issues such as controlling, making decisions or predictions are related to it. It also has the main position in robotics. Therefore, this branch of computer science has been developing for a long time both in theoretical and implementation aspects. In a lot of cases pattern recognition can be a difficult problem and consequently the only method commonly used to sort out this issue does not exist. Presently, a wide range of methods based on various elements of mathematics, for instance calculus of probability or approximation theory, is applied. However, a universal recognition method does not exists - a given one can be effective for a specific sort of tasks and can fail for others. This is the reason why new methods are created and the existing ones developed. For example, syntactic methods are supported with probabilistic mechanisms and methods, which are combination of different basic methods such as neural-fuzzy ones, are created or hybrid expert systems are built. This paper concerns recognition curves in relation to their structural features. The considered problem is situated in a group of problems where pattern representation is a sequence of primitives being elements of a context language. For this group of languages, admittedly, automata which analyze these languages exist but their complexity is non-polinominal and consequently their usefulness in practical applications is limited. Moreover, an algorithm of grammar inference does not exist, consequently a method of automatic creation of tables controlling parsers (conversion functions in automata) does not exist, which in a practical nontrivial application disqualifies these languages. So, for structural patterns whose representations belong to context languages syntactic methods allowing to analyze them do not exist. Therefore, an application of nonsyntactic methods to structural features analyzing seems to be valuable. The aim of this paper is to propose a new methodology of curves recognition in relation to their structural features taking advantage of fuzzy methods statistically aided. The possibility of a neural implementation of a recognition system based on the proposed methodology is tested. In the second chapter of this paper, the methodology of a decision function construction in an axiomatic recognition of patterns is presented. In the third chapter the proposed methodology is applied to classification curves describing relative changes in the cardiac rhythm between different people with and without a cognitive load, respectively. The curves were obtained in the Department of Psychophysiology of the Jagiellonian University. The experiment is described in details in [14], [15], [27]. The fourth chapter contains the description of a neural network computing the value of membership functions for each class." @default.
- W1425595655 created "2016-06-24" @default.
- W1425595655 creator A5011981224 @default.
- W1425595655 date "2011-01-01" @default.
- W1425595655 modified "2023-10-03" @default.
- W1425595655 title "Structural recognition of curves using a neural-aided fuzzy-statistic method with applications to graphs of heart-rate ratios" @default.
- W1425595655 cites W1480478985 @default.
- W1425595655 cites W190813328 @default.
- W1425595655 cites W1931006721 @default.
- W1425595655 cites W1984367183 @default.
- W1425595655 cites W1984872241 @default.
- W1425595655 cites W1988115241 @default.
- W1425595655 cites W2041280856 @default.
- W1425595655 cites W2049561324 @default.
- W1425595655 cites W2049755725 @default.
- W1425595655 cites W2069242661 @default.
- W1425595655 cites W2081711580 @default.
- W1425595655 cites W2092505815 @default.
- W1425595655 cites W2095376411 @default.
- W1425595655 cites W2103496339 @default.
- W1425595655 cites W2137983211 @default.
- W1425595655 cites W2151029520 @default.
- W1425595655 cites W2301676159 @default.
- W1425595655 cites W2399550107 @default.
- W1425595655 cites W2913040431 @default.
- W1425595655 cites W873547066 @default.
- W1425595655 doi "https://doi.org/10.4467/20838476si.11.009.0295" @default.
- W1425595655 hasPublicationYear "2011" @default.
- W1425595655 type Work @default.
- W1425595655 sameAs 1425595655 @default.
- W1425595655 citedByCount "2" @default.
- W1425595655 countsByYear W14255956552012 @default.
- W1425595655 countsByYear W14255956552015 @default.
- W1425595655 crossrefType "journal-article" @default.
- W1425595655 hasAuthorship W1425595655A5011981224 @default.
- W1425595655 hasConcept C112505250 @default.
- W1425595655 hasConcept C11413529 @default.
- W1425595655 hasConcept C119857082 @default.
- W1425595655 hasConcept C154945302 @default.
- W1425595655 hasConcept C159985019 @default.
- W1425595655 hasConcept C17744445 @default.
- W1425595655 hasConcept C186644900 @default.
- W1425595655 hasConcept C192562407 @default.
- W1425595655 hasConcept C199539241 @default.
- W1425595655 hasConcept C204323151 @default.
- W1425595655 hasConcept C23123220 @default.
- W1425595655 hasConcept C2776359362 @default.
- W1425595655 hasConcept C41008148 @default.
- W1425595655 hasConcept C49937458 @default.
- W1425595655 hasConcept C80444323 @default.
- W1425595655 hasConcept C88548561 @default.
- W1425595655 hasConcept C94625758 @default.
- W1425595655 hasConceptScore W1425595655C112505250 @default.
- W1425595655 hasConceptScore W1425595655C11413529 @default.
- W1425595655 hasConceptScore W1425595655C119857082 @default.
- W1425595655 hasConceptScore W1425595655C154945302 @default.
- W1425595655 hasConceptScore W1425595655C159985019 @default.
- W1425595655 hasConceptScore W1425595655C17744445 @default.
- W1425595655 hasConceptScore W1425595655C186644900 @default.
- W1425595655 hasConceptScore W1425595655C192562407 @default.
- W1425595655 hasConceptScore W1425595655C199539241 @default.
- W1425595655 hasConceptScore W1425595655C204323151 @default.
- W1425595655 hasConceptScore W1425595655C23123220 @default.
- W1425595655 hasConceptScore W1425595655C2776359362 @default.
- W1425595655 hasConceptScore W1425595655C41008148 @default.
- W1425595655 hasConceptScore W1425595655C49937458 @default.
- W1425595655 hasConceptScore W1425595655C80444323 @default.
- W1425595655 hasConceptScore W1425595655C88548561 @default.
- W1425595655 hasConceptScore W1425595655C94625758 @default.
- W1425595655 hasLocation W14255956551 @default.
- W1425595655 hasOpenAccess W1425595655 @default.
- W1425595655 hasPrimaryLocation W14255956551 @default.
- W1425595655 hasRelatedWork W1504562249 @default.
- W1425595655 hasRelatedWork W1592862459 @default.
- W1425595655 hasRelatedWork W1655153335 @default.
- W1425595655 hasRelatedWork W188860745 @default.
- W1425595655 hasRelatedWork W2004189099 @default.
- W1425595655 hasRelatedWork W2005033854 @default.
- W1425595655 hasRelatedWork W2030091586 @default.
- W1425595655 hasRelatedWork W2119442865 @default.
- W1425595655 hasRelatedWork W2123149341 @default.
- W1425595655 hasRelatedWork W2131131861 @default.
- W1425595655 hasRelatedWork W2164923629 @default.
- W1425595655 hasRelatedWork W2182377636 @default.
- W1425595655 hasRelatedWork W2183526240 @default.
- W1425595655 hasRelatedWork W2228502273 @default.
- W1425595655 hasRelatedWork W2330938701 @default.
- W1425595655 hasRelatedWork W2987199196 @default.
- W1425595655 hasRelatedWork W3089235831 @default.
- W1425595655 hasRelatedWork W3176893098 @default.
- W1425595655 hasRelatedWork W3210934532 @default.
- W1425595655 hasRelatedWork W2740138349 @default.
- W1425595655 hasVolume "20" @default.
- W1425595655 isParatext "false" @default.
- W1425595655 isRetracted "false" @default.
- W1425595655 magId "1425595655" @default.
- W1425595655 workType "article" @default.