Matches in SemOpenAlex for { <https://semopenalex.org/work/W143242907> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W143242907 abstract "Sparse Mixture Models have important applications in many areas, such as Signal and Image Processing, Genomics, Covert Communication, etc. In my talk, I will consider the problems of detecting and estimating sparse mixtuers. Detection Higher Criticism is a statistic inspired by a multiple comparisons concept mentioned in passing by Tukey (1976) (but as a term, Higher Criticism is invented by a German historian Johann Eichhorn (1787)). We are able to show that the resulting Higher Criticism statistic is effective at resolving a very subtle testing problem: testing whether n normal means are all zero versus the alternative that a small fraction is nonzero; the subtlety of this ‘sparse normal means’ testing problem can be seen from work of Ingster (1999) and Jin(2002), who studied such problems in great detail. In their studies, they identified an interesting range of cases where the small fraction of nonzero means is so small that the alternative hypothesis exhibits little noticeable effect on the distribution on the p-values either for the bulk of the tests or for the few most highly significant tests. In this range, when the amplitude of nonzero means is calibrated with the fraction of nonzero means, the likelihood ratio test for a precisely-specified alternative would still succeed in separating the two hypotheses. We show that the higher criticism is successful throughout the same region of amplitude vs. sparsity where the likelihood ratio test would succeed. Since it does not require a specification of the alternative, this shows that Higher Criticism is in a sense optimally adaptive to unknown sparsity and size of the non-null effects. While our theoretical work is largely asymptotic, we provide simulations in finite samples. We also show Higher Criticism works very well over a range of non-Gaussian cases. Estimation False Discovery Rate (FDR) control is a recent innovation in multiple hypothesis testing, in which one seeks to ensure that at most a certain fraction of the rejected null hypotheses correspond to false rejections (i.e. false discoveries). The FDR principle also can be used in highly multivariate estimation problems, where it has recently been shown to provide an asymptotically minimax solution to the problem of estimating a sparse mean vector in the presence of Gaussian white noise. In effect, FDR provides an effective method of setting a threshold for separating signal from noise when the signal is sparse and the noise is Gaussian. In this talk we consider the application of FDR thresholding to non-Gaussian settings, in hopes of learning whether the good asymptotic properties of FDR thresholding as an estimation tool hold more broadly than just at the standard Gaussian model. We study sparse exponential model and sparse Poisson model, which are important models for nonGaussian data, and have applications in many areas as well, such as Astronomy and Positron Emission Tomography (PET) etc. We show that the FDR principle also provide an asymptotically minimax solution to the problem of estimating a sparse mean vector even in the presence of exponential/Poisson noise, and in effect FDR provides an effective method of setting a threshold for separating signal from noise when the signal is sparse and the noise is exponential/Poisson. We compare our results with work in the Gaussian setting by Abramovich, Benjamini, Donoho, Johnstone (2000). Joint work with David L. Donoho." @default.
- W143242907 created "2016-06-24" @default.
- W143242907 creator A5083038132 @default.
- W143242907 date "2003-01-01" @default.
- W143242907 modified "2023-09-26" @default.
- W143242907 title "Detecting and estimating sparse mixtures" @default.
- W143242907 cites W2128274947 @default.
- W143242907 cites W2133264613 @default.
- W143242907 hasPublicationYear "2003" @default.
- W143242907 type Work @default.
- W143242907 sameAs 143242907 @default.
- W143242907 citedByCount "11" @default.
- W143242907 countsByYear W1432429072013 @default.
- W143242907 countsByYear W1432429072014 @default.
- W143242907 countsByYear W1432429072015 @default.
- W143242907 countsByYear W1432429072020 @default.
- W143242907 countsByYear W1432429072021 @default.
- W143242907 crossrefType "book" @default.
- W143242907 hasAuthorship W143242907A5083038132 @default.
- W143242907 hasConcept C105795698 @default.
- W143242907 hasConcept C11413529 @default.
- W143242907 hasConcept C124952713 @default.
- W143242907 hasConcept C127413603 @default.
- W143242907 hasConcept C138885662 @default.
- W143242907 hasConcept C142362112 @default.
- W143242907 hasConcept C146978453 @default.
- W143242907 hasConcept C149629883 @default.
- W143242907 hasConcept C169857963 @default.
- W143242907 hasConcept C178790620 @default.
- W143242907 hasConcept C185592680 @default.
- W143242907 hasConcept C204323151 @default.
- W143242907 hasConcept C2779338814 @default.
- W143242907 hasConcept C33923547 @default.
- W143242907 hasConcept C41008148 @default.
- W143242907 hasConcept C41895202 @default.
- W143242907 hasConcept C7991579 @default.
- W143242907 hasConcept C87007009 @default.
- W143242907 hasConcept C89128539 @default.
- W143242907 hasConceptScore W143242907C105795698 @default.
- W143242907 hasConceptScore W143242907C11413529 @default.
- W143242907 hasConceptScore W143242907C124952713 @default.
- W143242907 hasConceptScore W143242907C127413603 @default.
- W143242907 hasConceptScore W143242907C138885662 @default.
- W143242907 hasConceptScore W143242907C142362112 @default.
- W143242907 hasConceptScore W143242907C146978453 @default.
- W143242907 hasConceptScore W143242907C149629883 @default.
- W143242907 hasConceptScore W143242907C169857963 @default.
- W143242907 hasConceptScore W143242907C178790620 @default.
- W143242907 hasConceptScore W143242907C185592680 @default.
- W143242907 hasConceptScore W143242907C204323151 @default.
- W143242907 hasConceptScore W143242907C2779338814 @default.
- W143242907 hasConceptScore W143242907C33923547 @default.
- W143242907 hasConceptScore W143242907C41008148 @default.
- W143242907 hasConceptScore W143242907C41895202 @default.
- W143242907 hasConceptScore W143242907C7991579 @default.
- W143242907 hasConceptScore W143242907C87007009 @default.
- W143242907 hasConceptScore W143242907C89128539 @default.
- W143242907 hasLocation W1432429071 @default.
- W143242907 hasOpenAccess W143242907 @default.
- W143242907 hasPrimaryLocation W1432429071 @default.
- W143242907 hasRelatedWork W1507434582 @default.
- W143242907 hasRelatedWork W1587510588 @default.
- W143242907 hasRelatedWork W1971265470 @default.
- W143242907 hasRelatedWork W1981106668 @default.
- W143242907 hasRelatedWork W2003702553 @default.
- W143242907 hasRelatedWork W2028072731 @default.
- W143242907 hasRelatedWork W2029394273 @default.
- W143242907 hasRelatedWork W2049704395 @default.
- W143242907 hasRelatedWork W2064921494 @default.
- W143242907 hasRelatedWork W2074089196 @default.
- W143242907 hasRelatedWork W2103244186 @default.
- W143242907 hasRelatedWork W2110065044 @default.
- W143242907 hasRelatedWork W2113575907 @default.
- W143242907 hasRelatedWork W2113890418 @default.
- W143242907 hasRelatedWork W2133264613 @default.
- W143242907 hasRelatedWork W2166043450 @default.
- W143242907 hasRelatedWork W2296616510 @default.
- W143242907 hasRelatedWork W2962988259 @default.
- W143242907 hasRelatedWork W3099354396 @default.
- W143242907 hasRelatedWork W3100205528 @default.
- W143242907 isParatext "false" @default.
- W143242907 isRetracted "false" @default.
- W143242907 magId "143242907" @default.
- W143242907 workType "book" @default.