Matches in SemOpenAlex for { <https://semopenalex.org/work/W1433375077> ?p ?o ?g. }
- W1433375077 abstract "Give a graph class G and a nonnegative integerk, we use G+kv, G+ke, and G-ke to denote the classes of graphs that can be obtained from some graph in G by adding k vertices, adding k edges, and deleting k edges, respectively. They are called almost (unit) interval graphs if G is the class of (unit) interval graphs. Almost (unit) interval graphs are well motivated from computational biology, where the data ought to be represented by a (unit) interval graph while we can only expect an almost (unit) interval graph for the best. For any fixed k, we give linear-time algorithms for recognizing all these classes, and in the case of membership, our algorithms provide also a specific (unit) interval graph as evidence. When k is part of the input, all the recognition problems are NP-complete. Our results imply that all of them are fixed-parameter tractable parameterized by k, thereby resolving the long-standing open problem on the parameterized complexity of recognizing (unit) interval+ke, first asked by Bodlaender et al. [Comput. Appl. Biosci., 11(1):49‐57, 1995]. Moreover, our algorithms for recognizing (unit-)interval+kv and (unit-)interval-ke have single-exponential dependence onk and linear dependence on the graph size, which significantly improve all previous algorithms for recognizing the same classes. In particular, we show that: (n andm stand for the numbers of vertices and edges respectively in the input graph) interval-ke can be recognized in time O(6 k (n +m)), improved from O(k 2k n 3 m) [Heggernes et al., STOC 2007]; unit-interval-ke can be recognized in timeO(4 k (n+m)), improved fromO(16 k (m+n)) [Kaplan et al., FOCS 1994]; interval+kv can be recognized in time O(8 k (n +m)), improved from O(10 k n 9 ) [Cao and Marx, SODA 2014]; and unit-interval+kv can be recognized in timeO(6 k (n+m)), improved fromO(6 k n 6 ) [Villanger, IPEC 2010]. These problems have natural optimization versions, which are known as graph modification problems. For those related to interval graphs, we show that under certain condition, there always exist optimum solutions that preserve all modules of the input graph. Another important ingredient of our algorithms is combinatorial and algorithmic characterizations of graphs free of small non-interval graphs. These studies might be of their own interest." @default.
- W1433375077 created "2016-06-24" @default.
- W1433375077 creator A5013247988 @default.
- W1433375077 date "2014-03-06" @default.
- W1433375077 modified "2023-09-24" @default.
- W1433375077 title "Linear Recognition of Almost (Unit) Interval Graphs" @default.
- W1433375077 cites W144954708 @default.
- W1433375077 cites W148237485 @default.
- W1433375077 cites W1511161972 @default.
- W1433375077 cites W1512056994 @default.
- W1433375077 cites W1513400187 @default.
- W1433375077 cites W1517921658 @default.
- W1433375077 cites W1579049696 @default.
- W1433375077 cites W1580422088 @default.
- W1433375077 cites W1586744224 @default.
- W1433375077 cites W1674929459 @default.
- W1433375077 cites W178380488 @default.
- W1433375077 cites W1964064059 @default.
- W1433375077 cites W1966711026 @default.
- W1433375077 cites W1969279846 @default.
- W1433375077 cites W1970088964 @default.
- W1433375077 cites W1972734518 @default.
- W1433375077 cites W1974006935 @default.
- W1433375077 cites W1980392938 @default.
- W1433375077 cites W1991477862 @default.
- W1433375077 cites W1991485710 @default.
- W1433375077 cites W1998389851 @default.
- W1433375077 cites W1999591020 @default.
- W1433375077 cites W2000763343 @default.
- W1433375077 cites W2003902046 @default.
- W1433375077 cites W2004181701 @default.
- W1433375077 cites W2006955534 @default.
- W1433375077 cites W2011039300 @default.
- W1433375077 cites W2011796884 @default.
- W1433375077 cites W2012067448 @default.
- W1433375077 cites W2014611532 @default.
- W1433375077 cites W2016602672 @default.
- W1433375077 cites W2019030165 @default.
- W1433375077 cites W2024491681 @default.
- W1433375077 cites W2027566319 @default.
- W1433375077 cites W2029095423 @default.
- W1433375077 cites W2030520663 @default.
- W1433375077 cites W2032212328 @default.
- W1433375077 cites W2035331304 @default.
- W1433375077 cites W2035632654 @default.
- W1433375077 cites W2037583329 @default.
- W1433375077 cites W2038073775 @default.
- W1433375077 cites W2038865230 @default.
- W1433375077 cites W2045187717 @default.
- W1433375077 cites W2046662728 @default.
- W1433375077 cites W2048237851 @default.
- W1433375077 cites W2049670817 @default.
- W1433375077 cites W2054590722 @default.
- W1433375077 cites W2055650273 @default.
- W1433375077 cites W2057556050 @default.
- W1433375077 cites W2082618417 @default.
- W1433375077 cites W2084783792 @default.
- W1433375077 cites W2084803275 @default.
- W1433375077 cites W2085550081 @default.
- W1433375077 cites W2086331454 @default.
- W1433375077 cites W2089465933 @default.
- W1433375077 cites W2091208300 @default.
- W1433375077 cites W2093843227 @default.
- W1433375077 cites W2095658341 @default.
- W1433375077 cites W2097374444 @default.
- W1433375077 cites W2104894563 @default.
- W1433375077 cites W2113280143 @default.
- W1433375077 cites W2125720043 @default.
- W1433375077 cites W2129430342 @default.
- W1433375077 cites W2130673833 @default.
- W1433375077 cites W2131274579 @default.
- W1433375077 cites W2139759040 @default.
- W1433375077 cites W2144050783 @default.
- W1433375077 cites W2150875823 @default.
- W1433375077 cites W2161426837 @default.
- W1433375077 cites W2161822615 @default.
- W1433375077 cites W2165605193 @default.
- W1433375077 cites W2166395672 @default.
- W1433375077 cites W2172016099 @default.
- W1433375077 cites W2179374656 @default.
- W1433375077 cites W2277578521 @default.
- W1433375077 cites W2399421057 @default.
- W1433375077 cites W2401610261 @default.
- W1433375077 cites W2570366614 @default.
- W1433375077 cites W258974901 @default.
- W1433375077 cites W2913688336 @default.
- W1433375077 cites W3149604617 @default.
- W1433375077 cites W85690038 @default.
- W1433375077 hasPublicationYear "2014" @default.
- W1433375077 type Work @default.
- W1433375077 sameAs 1433375077 @default.
- W1433375077 citedByCount "3" @default.
- W1433375077 countsByYear W14333750772014 @default.
- W1433375077 countsByYear W14333750772015 @default.
- W1433375077 countsByYear W14333750772016 @default.
- W1433375077 crossrefType "posted-content" @default.
- W1433375077 hasAuthorship W1433375077A5013247988 @default.
- W1433375077 hasConcept C114614502 @default.
- W1433375077 hasConcept C118615104 @default.
- W1433375077 hasConcept C122637931 @default.