Matches in SemOpenAlex for { <https://semopenalex.org/work/W1435338112> ?p ?o ?g. }
- W1435338112 abstract "The present paper reviews recent developments on the influence of oil on several thermophysical phenomena in reciprocating compressors. Besides the more essential role of lubrication, the oil is responsible for several tasks in the compressor, from cooling to keeping a low system pressure while the compressor is idle. Thermodynamics dictates the amount of dissolved refrigerant the oil can retain at a particular condition. Hence, the viscosity of the lubricant is directly affected by the refrigerant solubility in the oil. Heat transfer is crucial for keeping a low temperature in the compressor because thermodynamic losses increase with increasing gas temperature. Fluid mechanics is essential to guarantee that oil is delivered to the bearings and that lubrication is performed efficiently under any operating condition. INTRODUCTION As with other economic sectors, the refrigeration industry is being faced by many challenges through recent and present times concerning ecological sustainability and environmental impact. CFCs have already been banned in many countries and HCFCs (their temporary replacements in the refrigeration industry) will be so by 2030 in many parts of the developed world [1]. It is widely acknowledged, however, that the issue of Global Warming should not be looked at only from a perspective of direct emissions, i.e., refrigerant leakages during operation and equipment end-of-life. As pointed out by many sources [1-3], approximately 80% or more of the Global Warming impact of refrigeration plants is due to energy consumption (an indirect effect), and not to refrigerant leakage. There are more than 10 domestic refrigerators currently in operation worldwide, which corresponds to a doubling of the production between 1990 and 2002 [1]. In worldwide commercial refrigeration, there are more than 75 × 10 units in operation [4]. Overall, refrigeration consumes about 15% of all electricity produced worldwide, and the latter is mostly associated with fossil fuels. Reducing the energy consumption of refrigeration systems has now become a key environmental priority [1]. A typical household refrigeration appliance operates according to the thermodynamic cycle shown in Figure 1. The compressor is responsible for moving the refrigerant through the components of the cycle and for, together with the expansion device, establishing regions of low and high refrigerant saturation pressure in the cycle. The removal of the cooling load from the ambient and its rejection (together with the compressor work, in the form of heat) to the environment is accomplished via the evaporator and condenser, respectively. An internal heat exchanger is often utilized as a means of increasing the refrigeration capacity by admitting a low vapor quality refrigerant in the evaporator [5]. This heat exchanger also guarantees that no liquid is present in the compressor suction by superheating the vapor as it leaves the evaporator. Figure 2 shows a p-h diagram of the vapor compression cycle." @default.
- W1435338112 created "2016-06-24" @default.
- W1435338112 creator A5039505024 @default.
- W1435338112 creator A5041426283 @default.
- W1435338112 date "2007-01-01" @default.
- W1435338112 modified "2023-09-26" @default.
- W1435338112 title "The thermodynamics, heat transer and fluid mechanics role of lubricant oil in hermetic reciprocating compressors" @default.
- W1435338112 cites W1486722558 @default.
- W1435338112 cites W1493995874 @default.
- W1435338112 cites W1508353235 @default.
- W1435338112 cites W1524031841 @default.
- W1435338112 cites W1531934134 @default.
- W1435338112 cites W1572690314 @default.
- W1435338112 cites W1583369289 @default.
- W1435338112 cites W1584935446 @default.
- W1435338112 cites W1590730796 @default.
- W1435338112 cites W1602113124 @default.
- W1435338112 cites W1606313469 @default.
- W1435338112 cites W1975443891 @default.
- W1435338112 cites W1982527536 @default.
- W1435338112 cites W1993340735 @default.
- W1435338112 cites W1996698357 @default.
- W1435338112 cites W2002509044 @default.
- W1435338112 cites W2018199146 @default.
- W1435338112 cites W2035726441 @default.
- W1435338112 cites W2039443603 @default.
- W1435338112 cites W2048652816 @default.
- W1435338112 cites W2055250195 @default.
- W1435338112 cites W2055508923 @default.
- W1435338112 cites W2075807551 @default.
- W1435338112 cites W2080221989 @default.
- W1435338112 cites W2082571031 @default.
- W1435338112 cites W2090905233 @default.
- W1435338112 cites W2091482325 @default.
- W1435338112 cites W2093783926 @default.
- W1435338112 cites W2113194143 @default.
- W1435338112 cites W2117621441 @default.
- W1435338112 cites W2125353410 @default.
- W1435338112 cites W2144228791 @default.
- W1435338112 cites W2150026399 @default.
- W1435338112 cites W2156762434 @default.
- W1435338112 cites W2165904753 @default.
- W1435338112 cites W2284763872 @default.
- W1435338112 cites W2290908716 @default.
- W1435338112 cites W3045780274 @default.
- W1435338112 cites W3047727266 @default.
- W1435338112 cites W3148284042 @default.
- W1435338112 hasPublicationYear "2007" @default.
- W1435338112 type Work @default.
- W1435338112 sameAs 1435338112 @default.
- W1435338112 citedByCount "1" @default.
- W1435338112 crossrefType "journal-article" @default.
- W1435338112 hasAuthorship W1435338112A5039505024 @default.
- W1435338112 hasAuthorship W1435338112A5041426283 @default.
- W1435338112 hasConcept C121332964 @default.
- W1435338112 hasConcept C127413603 @default.
- W1435338112 hasConcept C131097465 @default.
- W1435338112 hasConcept C184608416 @default.
- W1435338112 hasConcept C199499590 @default.
- W1435338112 hasConcept C2780874159 @default.
- W1435338112 hasConcept C39432304 @default.
- W1435338112 hasConcept C5395353 @default.
- W1435338112 hasConcept C64980472 @default.
- W1435338112 hasConcept C69907114 @default.
- W1435338112 hasConcept C78519656 @default.
- W1435338112 hasConcept C78762247 @default.
- W1435338112 hasConcept C97355855 @default.
- W1435338112 hasConceptScore W1435338112C121332964 @default.
- W1435338112 hasConceptScore W1435338112C127413603 @default.
- W1435338112 hasConceptScore W1435338112C131097465 @default.
- W1435338112 hasConceptScore W1435338112C184608416 @default.
- W1435338112 hasConceptScore W1435338112C199499590 @default.
- W1435338112 hasConceptScore W1435338112C2780874159 @default.
- W1435338112 hasConceptScore W1435338112C39432304 @default.
- W1435338112 hasConceptScore W1435338112C5395353 @default.
- W1435338112 hasConceptScore W1435338112C64980472 @default.
- W1435338112 hasConceptScore W1435338112C69907114 @default.
- W1435338112 hasConceptScore W1435338112C78519656 @default.
- W1435338112 hasConceptScore W1435338112C78762247 @default.
- W1435338112 hasConceptScore W1435338112C97355855 @default.
- W1435338112 hasLocation W14353381121 @default.
- W1435338112 hasOpenAccess W1435338112 @default.
- W1435338112 hasPrimaryLocation W14353381121 @default.
- W1435338112 hasRelatedWork W1502744798 @default.
- W1435338112 hasRelatedWork W1536315306 @default.
- W1435338112 hasRelatedWork W1537622150 @default.
- W1435338112 hasRelatedWork W1992758261 @default.
- W1435338112 hasRelatedWork W2000275428 @default.
- W1435338112 hasRelatedWork W2043890992 @default.
- W1435338112 hasRelatedWork W2217184698 @default.
- W1435338112 hasRelatedWork W2947456099 @default.
- W1435338112 hasRelatedWork W3014628185 @default.
- W1435338112 hasRelatedWork W3047828181 @default.
- W1435338112 hasRelatedWork W2266800524 @default.
- W1435338112 hasRelatedWork W2837366097 @default.
- W1435338112 hasRelatedWork W2846769582 @default.
- W1435338112 hasRelatedWork W2857024765 @default.
- W1435338112 hasRelatedWork W2930450743 @default.
- W1435338112 hasRelatedWork W2960447276 @default.
- W1435338112 hasRelatedWork W2977977414 @default.