Matches in SemOpenAlex for { <https://semopenalex.org/work/W143770514> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W143770514 abstract "The automated processing of range data is an important problem in many computer vision applications. Range sensors are being used to aid navigation, object recognition, inspection, and reverse engineering. These applications require range sensors be placed on the factory floor and on autonomous vehicles, creating scenarios well removed from controlled laboratory settings. Instead of recording measurements from a single isolated object with consistent surface properties, range sensors are now exposed to scenes composed of many objects, varying surface properties, and objects occupying different portions of the depth of field and field of view. Not only is the composition of a range scene more complicated but the sensing environment is less amenable to precise and accurate measurements.While a direct and dense measurement of depth is attractive to many applications, a range map by itself has little practical use. The data is corrupted by noise, randomly of setting each measurement from its true position. The amount of noise can vary across the scene as a function of surface properties, depth, orientation, and position in the field of view. Furthermore, the data contains outliers or completely erroneous measurements in regions of specularity and along discontinuities. Finally, the data is not segmented, so the mapping of measurements to particular object surfaces is not immediate. These problems become more and more difficult to address as scene complexity increases.Here, we study the statistical properties of range data and surface estimates, constructing statistical tools for simultaneously segmenting and reconstructing complicated range images. First, using order statistics, we construct a robust local surface estimator, called M scUSE, which tolerates a large percentage of outlying data, small scale discontinuities, and multiple surfaces in an image region. Second, using multivariate regression and prediction intervals, we devise statistical decision criteria to control a surface growing segmentation process. These criteria reduce the number of tuning parameters while increasing the sensitivity to small scale discontinuities. We analyze the expected performance of these techniques on synthetic data and include a segmentation comparison study on data from a laser range sensor." @default.
- W143770514 created "2016-06-24" @default.
- W143770514 creator A5049825346 @default.
- W143770514 date "1998-03-17" @default.
- W143770514 modified "2023-09-23" @default.
- W143770514 title "Regression-based surface reconstruction: coping with noise, outliers, and discontinuities" @default.
- W143770514 hasPublicationYear "1998" @default.
- W143770514 type Work @default.
- W143770514 sameAs 143770514 @default.
- W143770514 citedByCount "1" @default.
- W143770514 crossrefType "journal-article" @default.
- W143770514 hasAuthorship W143770514A5049825346 @default.
- W143770514 hasConcept C10138342 @default.
- W143770514 hasConcept C115961682 @default.
- W143770514 hasConcept C127413603 @default.
- W143770514 hasConcept C134306372 @default.
- W143770514 hasConcept C146978453 @default.
- W143770514 hasConcept C154945302 @default.
- W143770514 hasConcept C15627037 @default.
- W143770514 hasConcept C162324750 @default.
- W143770514 hasConcept C198082294 @default.
- W143770514 hasConcept C204323151 @default.
- W143770514 hasConcept C31972630 @default.
- W143770514 hasConcept C33923547 @default.
- W143770514 hasConcept C41008148 @default.
- W143770514 hasConcept C79337645 @default.
- W143770514 hasConcept C89600930 @default.
- W143770514 hasConcept C99498987 @default.
- W143770514 hasConceptScore W143770514C10138342 @default.
- W143770514 hasConceptScore W143770514C115961682 @default.
- W143770514 hasConceptScore W143770514C127413603 @default.
- W143770514 hasConceptScore W143770514C134306372 @default.
- W143770514 hasConceptScore W143770514C146978453 @default.
- W143770514 hasConceptScore W143770514C154945302 @default.
- W143770514 hasConceptScore W143770514C15627037 @default.
- W143770514 hasConceptScore W143770514C162324750 @default.
- W143770514 hasConceptScore W143770514C198082294 @default.
- W143770514 hasConceptScore W143770514C204323151 @default.
- W143770514 hasConceptScore W143770514C31972630 @default.
- W143770514 hasConceptScore W143770514C33923547 @default.
- W143770514 hasConceptScore W143770514C41008148 @default.
- W143770514 hasConceptScore W143770514C79337645 @default.
- W143770514 hasConceptScore W143770514C89600930 @default.
- W143770514 hasConceptScore W143770514C99498987 @default.
- W143770514 hasLocation W1437705141 @default.
- W143770514 hasOpenAccess W143770514 @default.
- W143770514 hasPrimaryLocation W1437705141 @default.
- W143770514 hasRelatedWork W1016343716 @default.
- W143770514 hasRelatedWork W131546361 @default.
- W143770514 hasRelatedWork W1506288817 @default.
- W143770514 hasRelatedWork W1521505254 @default.
- W143770514 hasRelatedWork W1774243423 @default.
- W143770514 hasRelatedWork W1796781477 @default.
- W143770514 hasRelatedWork W1965461968 @default.
- W143770514 hasRelatedWork W1966821277 @default.
- W143770514 hasRelatedWork W2006013298 @default.
- W143770514 hasRelatedWork W2010363308 @default.
- W143770514 hasRelatedWork W2106131375 @default.
- W143770514 hasRelatedWork W2116073066 @default.
- W143770514 hasRelatedWork W2130724993 @default.
- W143770514 hasRelatedWork W2143291846 @default.
- W143770514 hasRelatedWork W2145055731 @default.
- W143770514 hasRelatedWork W2158378098 @default.
- W143770514 hasRelatedWork W2185770548 @default.
- W143770514 hasRelatedWork W2472384251 @default.
- W143770514 hasRelatedWork W2914467399 @default.
- W143770514 hasRelatedWork W2962747311 @default.
- W143770514 isParatext "false" @default.
- W143770514 isRetracted "false" @default.
- W143770514 magId "143770514" @default.
- W143770514 workType "article" @default.