Matches in SemOpenAlex for { <https://semopenalex.org/work/W1439354958> ?p ?o ?g. }
- W1439354958 abstract "Watershed classification is a process that classifies watershed sub-basins into certain groups due to similarities and/or differences in their characteristics. Such a process is of necessity and importance to support the decision making and practice of watershed monitoring, modeling, and management and helps in reducing the set up and running cost and improving efficiency. A watershed system is usually characterized by a large variety of topographical, hydrological, and ecological features, which provides the basis for watershed classification and also makes it a challenging task. Furthermore, many of the features and their interrelationships are hardly measured or quantified accurately due to the complexity and uncertainty of the system. Numerous studies have been conducted on watershed classification but the comprehensive consideration of both systematic complexity and uncertainty in the classification process is lacking. There is a need of more efficient and reliable approaches of watershed classification to deal with complex and uncertain features. -- This research aims to fill the gap by developing a novel classification system based on the enhanced adaptive resonance theory (ART) mapping approaches to classify complex watershed features under uncertainty for supporting watershed modeling and management. The developed system is composed of: (1) a two-stage adaptive resonance theory mapping (TSAM) approach by integrating multitier ART into the system to form an unsupervised learning module for cluster centroid calculation and a supervised learning module for normalized original input classification; and (2) an integrated rule-based fuzzy adaptive resonance theory mapping (IRFAM) approach by incorporating fuzzy set theory and rule-based operation to the system to form an unsupervised learning module for cluster centroid calculation and two supervised learning modules for criteria combination and fuzzified input classification. -- To test the feasibility and efficiency, the developed system was applied to a real-world case study in the Deer River watershed, Canada. The results indicated that the watershed sub-basins were properly classified into preset target groups by both approaches in the given conditions (e.g., vigilance = 0.7). The TSAM approach could efficiently solve the problem of difficulties in criteria generation by using ART unsupervised classification and centriod determination in the first stage and feed the criteria to the ARTMap supervised classification in the second stage. In comparison with the TSAM, the IRFAM approach could take advantages of fuzzy set theory to generate full criteria combinations to match the input patterns and use the rule-based operation to screen the matched patterns into the target groups. This can efficiently handle the classification for the input patterns with a high degree of uncertainty and wide ranges of variations. In the case that there are not sufficient information for generating fuzzy membership functions, the TSAM could be a better choice than the IRFAM from a feasibility perspective; otherwise, the IRFAM could provide more accurate classification results than the TSAM." @default.
- W1439354958 created "2016-06-24" @default.
- W1439354958 creator A5087920560 @default.
- W1439354958 date "2009-01-01" @default.
- W1439354958 modified "2023-09-27" @default.
- W1439354958 title "Development of an enhanced adaptive resonance theory mapping system for watershed classification" @default.
- W1439354958 cites W104109 @default.
- W1439354958 cites W120161273 @default.
- W1439354958 cites W134309601 @default.
- W1439354958 cites W1498436455 @default.
- W1439354958 cites W1518186130 @default.
- W1439354958 cites W1523271034 @default.
- W1439354958 cites W1531857721 @default.
- W1439354958 cites W1540575383 @default.
- W1439354958 cites W1542886316 @default.
- W1439354958 cites W1584161386 @default.
- W1439354958 cites W1592627192 @default.
- W1439354958 cites W1597286183 @default.
- W1439354958 cites W1599216479 @default.
- W1439354958 cites W180885852 @default.
- W1439354958 cites W1820688260 @default.
- W1439354958 cites W1964741488 @default.
- W1439354958 cites W1966638011 @default.
- W1439354958 cites W1967011375 @default.
- W1439354958 cites W1970746706 @default.
- W1439354958 cites W1971735090 @default.
- W1439354958 cites W1974876113 @default.
- W1439354958 cites W1976990135 @default.
- W1439354958 cites W1992419399 @default.
- W1439354958 cites W1994471338 @default.
- W1439354958 cites W1995858328 @default.
- W1439354958 cites W2000868189 @default.
- W1439354958 cites W2010735452 @default.
- W1439354958 cites W2012611887 @default.
- W1439354958 cites W2019180895 @default.
- W1439354958 cites W2041847302 @default.
- W1439354958 cites W2048819046 @default.
- W1439354958 cites W2050288270 @default.
- W1439354958 cites W2051224630 @default.
- W1439354958 cites W2054743476 @default.
- W1439354958 cites W2070534370 @default.
- W1439354958 cites W2071396781 @default.
- W1439354958 cites W2072249266 @default.
- W1439354958 cites W2087347434 @default.
- W1439354958 cites W2090407929 @default.
- W1439354958 cites W2091470786 @default.
- W1439354958 cites W2098758111 @default.
- W1439354958 cites W2099242680 @default.
- W1439354958 cites W2103496339 @default.
- W1439354958 cites W2109149352 @default.
- W1439354958 cites W2111975408 @default.
- W1439354958 cites W2117812871 @default.
- W1439354958 cites W2119929398 @default.
- W1439354958 cites W2124776405 @default.
- W1439354958 cites W2128059168 @default.
- W1439354958 cites W2128084896 @default.
- W1439354958 cites W2133218851 @default.
- W1439354958 cites W2137902180 @default.
- W1439354958 cites W2138973222 @default.
- W1439354958 cites W2140394703 @default.
- W1439354958 cites W2143295299 @default.
- W1439354958 cites W2143731583 @default.
- W1439354958 cites W2144219012 @default.
- W1439354958 cites W2156060469 @default.
- W1439354958 cites W2156651974 @default.
- W1439354958 cites W2156909104 @default.
- W1439354958 cites W2160870368 @default.
- W1439354958 cites W2163113711 @default.
- W1439354958 cites W2166280719 @default.
- W1439354958 cites W2170548704 @default.
- W1439354958 cites W2241551256 @default.
- W1439354958 cites W2243346488 @default.
- W1439354958 cites W2322002063 @default.
- W1439354958 cites W241347143 @default.
- W1439354958 cites W2612166593 @default.
- W1439354958 cites W2743066794 @default.
- W1439354958 cites W2799061466 @default.
- W1439354958 cites W2912565176 @default.
- W1439354958 cites W2914019270 @default.
- W1439354958 cites W3120740533 @default.
- W1439354958 cites W585011264 @default.
- W1439354958 cites W587444011 @default.
- W1439354958 cites W608636598 @default.
- W1439354958 cites W88102679 @default.
- W1439354958 cites W2033077073 @default.
- W1439354958 cites W2152477898 @default.
- W1439354958 hasPublicationYear "2009" @default.
- W1439354958 type Work @default.
- W1439354958 sameAs 1439354958 @default.
- W1439354958 citedByCount "0" @default.
- W1439354958 crossrefType "dissertation" @default.
- W1439354958 hasAuthorship W1439354958A5087920560 @default.
- W1439354958 hasConcept C111919701 @default.
- W1439354958 hasConcept C115755159 @default.
- W1439354958 hasConcept C119857082 @default.
- W1439354958 hasConcept C124101348 @default.
- W1439354958 hasConcept C146599234 @default.
- W1439354958 hasConcept C150547873 @default.
- W1439354958 hasConcept C154945302 @default.
- W1439354958 hasConcept C177264268 @default.