Matches in SemOpenAlex for { <https://semopenalex.org/work/W1445355887> ?p ?o ?g. }
- W1445355887 endingPage "95" @default.
- W1445355887 startingPage "67" @default.
- W1445355887 abstract "The most powerful and important ideas of coding theory are based on the arithmetic systems of Galois fields. Since these arithmetic systems may be unfamiliar to many, we must develop a background in this branch of mathematics before we can proceed with the study of coding theory. In this chapter, we return to the development of the structure of Galois fields begun in Chapter 2. There we introduced the definition of a field, but did not develop procedures for actually constructing Galois fields in terms of their addition and multiplication tables. In this chapter, we shall develop such procedures. Galois fields will be studied by means of two constructions: one based on the integer ring and one based on polynomial rings. Because the integer ring and the polynomial rings have many properties in common we will find that the two constructions are very similar. Later, after the constructions of Galois fields are studied, we shall prove that all finite fields can be constructed in this way. The integer ring The set of integers (positive, negative, and zero) forms a ring under the usual operations of addition and multiplication. This ring is conventionally denoted by the label Z . We shall study the structure of the integer ring in this section." @default.
- W1445355887 created "2016-06-24" @default.
- W1445355887 creator A5031327322 @default.
- W1445355887 date "2003-02-06" @default.
- W1445355887 modified "2023-09-26" @default.
- W1445355887 title "The Arithmetic of Galois Fields" @default.
- W1445355887 cites W1541795511 @default.
- W1445355887 cites W1970246163 @default.
- W1445355887 cites W1972817581 @default.
- W1445355887 cites W1982892983 @default.
- W1445355887 cites W1983452362 @default.
- W1445355887 cites W1983551397 @default.
- W1445355887 cites W1985443843 @default.
- W1445355887 cites W1989332790 @default.
- W1445355887 cites W1989997946 @default.
- W1445355887 cites W1991133427 @default.
- W1445355887 cites W1991965593 @default.
- W1445355887 cites W1993602218 @default.
- W1445355887 cites W1995527419 @default.
- W1445355887 cites W1998064108 @default.
- W1445355887 cites W1999621872 @default.
- W1445355887 cites W2003685682 @default.
- W1445355887 cites W2004059212 @default.
- W1445355887 cites W2005457258 @default.
- W1445355887 cites W2014783995 @default.
- W1445355887 cites W2014860393 @default.
- W1445355887 cites W2014944833 @default.
- W1445355887 cites W2015635521 @default.
- W1445355887 cites W2016833807 @default.
- W1445355887 cites W2018063252 @default.
- W1445355887 cites W2020484625 @default.
- W1445355887 cites W2020678846 @default.
- W1445355887 cites W2020992040 @default.
- W1445355887 cites W2024113859 @default.
- W1445355887 cites W2026561832 @default.
- W1445355887 cites W2027330323 @default.
- W1445355887 cites W2029071632 @default.
- W1445355887 cites W2029197581 @default.
- W1445355887 cites W2031881996 @default.
- W1445355887 cites W2031949565 @default.
- W1445355887 cites W2036122994 @default.
- W1445355887 cites W2038058830 @default.
- W1445355887 cites W2040009340 @default.
- W1445355887 cites W2042559745 @default.
- W1445355887 cites W2043508852 @default.
- W1445355887 cites W2044983034 @default.
- W1445355887 cites W2045407304 @default.
- W1445355887 cites W2050687505 @default.
- W1445355887 cites W2063994293 @default.
- W1445355887 cites W2068933160 @default.
- W1445355887 cites W2069448237 @default.
- W1445355887 cites W2070442620 @default.
- W1445355887 cites W2070619968 @default.
- W1445355887 cites W2072359130 @default.
- W1445355887 cites W2073236804 @default.
- W1445355887 cites W2075850503 @default.
- W1445355887 cites W2078420256 @default.
- W1445355887 cites W2079363366 @default.
- W1445355887 cites W2081934516 @default.
- W1445355887 cites W2083005904 @default.
- W1445355887 cites W2083394863 @default.
- W1445355887 cites W2083774980 @default.
- W1445355887 cites W2084368719 @default.
- W1445355887 cites W2084871461 @default.
- W1445355887 cites W2086742230 @default.
- W1445355887 cites W2087362480 @default.
- W1445355887 cites W2088338167 @default.
- W1445355887 cites W2089272132 @default.
- W1445355887 cites W2089836926 @default.
- W1445355887 cites W2091899615 @default.
- W1445355887 cites W2096501452 @default.
- W1445355887 cites W2097209716 @default.
- W1445355887 cites W2097385238 @default.
- W1445355887 cites W2098076971 @default.
- W1445355887 cites W2098858680 @default.
- W1445355887 cites W2099462267 @default.
- W1445355887 cites W2099861763 @default.
- W1445355887 cites W2101402725 @default.
- W1445355887 cites W2102251435 @default.
- W1445355887 cites W2108347230 @default.
- W1445355887 cites W2108851207 @default.
- W1445355887 cites W2109084006 @default.
- W1445355887 cites W2110221038 @default.
- W1445355887 cites W2111045463 @default.
- W1445355887 cites W2111904632 @default.
- W1445355887 cites W2112682069 @default.
- W1445355887 cites W2113420555 @default.
- W1445355887 cites W2115789360 @default.
- W1445355887 cites W2117476053 @default.
- W1445355887 cites W2123499731 @default.
- W1445355887 cites W2124584433 @default.
- W1445355887 cites W2125296084 @default.
- W1445355887 cites W2128700225 @default.
- W1445355887 cites W2128765501 @default.
- W1445355887 cites W2129012564 @default.
- W1445355887 cites W2129031807 @default.
- W1445355887 cites W2129933365 @default.
- W1445355887 cites W2130046068 @default.