Matches in SemOpenAlex for { <https://semopenalex.org/work/W1445847407> ?p ?o ?g. }
- W1445847407 endingPage "194" @default.
- W1445847407 startingPage "153" @default.
- W1445847407 abstract "Abstract Computational studies of the electronic structures of periodic systems at the level of Hartree–Fock or density functional theory require the evaluation to appropriate accuracy of the lattice sums that appear in these formalisms. This chapter describes and illustrates a method for treating systems that are periodic in one of the three dimensions (i.e., stereoregular polymers), showing how a combination of Fourier-transform techniques and an Ewald-type partitioning enables these sums to be divided between physical (direct) space and reciprocal (Fourier) space in a way that enhances their convergence rate. It is also shown how the spatial (line-group) symmetry (including rotational and screw axes, reflection, and glide planes) can be exploited to improve the efficiency of computation, extending to this domain the technique of Dupuis and King for building a complete Fock matrix from a minimal set of its matrix elements. Other issues of computational efficiency are also reviewed. The methods, implemented in our computer program ft-1d , are illustrated for a problem of significant size: A carbon single-wall (7, 0) nanotube with 56 spatial symmetry operations and bases of up to 420 atomic orbitals per unit cell." @default.
- W1445847407 created "2016-06-24" @default.
- W1445847407 creator A5034440812 @default.
- W1445847407 creator A5035278574 @default.
- W1445847407 creator A5044957636 @default.
- W1445847407 date "2015-01-01" @default.
- W1445847407 modified "2023-09-26" @default.
- W1445847407 title "The Fourier Space Restricted Hartree–Fock Method for the Electronic Structure Calculation of One-Dimensionally Periodic Systems" @default.
- W1445847407 cites W121113699 @default.
- W1445847407 cites W1492293529 @default.
- W1445847407 cites W1964178407 @default.
- W1445847407 cites W1967034640 @default.
- W1445847407 cites W1967781209 @default.
- W1445847407 cites W1971634565 @default.
- W1445847407 cites W1975545613 @default.
- W1445847407 cites W1976567789 @default.
- W1445847407 cites W1976744905 @default.
- W1445847407 cites W1980450508 @default.
- W1445847407 cites W1982686104 @default.
- W1445847407 cites W1982928584 @default.
- W1445847407 cites W1983893987 @default.
- W1445847407 cites W1989239762 @default.
- W1445847407 cites W1991815284 @default.
- W1445847407 cites W1992319966 @default.
- W1445847407 cites W1993677234 @default.
- W1445847407 cites W1997944243 @default.
- W1445847407 cites W2001557116 @default.
- W1445847407 cites W2001676859 @default.
- W1445847407 cites W2006787354 @default.
- W1445847407 cites W2010195611 @default.
- W1445847407 cites W2014353717 @default.
- W1445847407 cites W2019069796 @default.
- W1445847407 cites W2019711843 @default.
- W1445847407 cites W2023078065 @default.
- W1445847407 cites W2035449081 @default.
- W1445847407 cites W2042612461 @default.
- W1445847407 cites W2044491501 @default.
- W1445847407 cites W2044645994 @default.
- W1445847407 cites W2045470807 @default.
- W1445847407 cites W2046412723 @default.
- W1445847407 cites W2050158101 @default.
- W1445847407 cites W2054287446 @default.
- W1445847407 cites W2055193842 @default.
- W1445847407 cites W2059700291 @default.
- W1445847407 cites W2060577429 @default.
- W1445847407 cites W2065067501 @default.
- W1445847407 cites W2067058956 @default.
- W1445847407 cites W2067127621 @default.
- W1445847407 cites W2068396228 @default.
- W1445847407 cites W2071709099 @default.
- W1445847407 cites W2073422405 @default.
- W1445847407 cites W2078755359 @default.
- W1445847407 cites W2079473982 @default.
- W1445847407 cites W2085949389 @default.
- W1445847407 cites W2086888103 @default.
- W1445847407 cites W2088356447 @default.
- W1445847407 cites W2090539392 @default.
- W1445847407 cites W2090994974 @default.
- W1445847407 cites W2098609738 @default.
- W1445847407 cites W2102591969 @default.
- W1445847407 cites W2120062331 @default.
- W1445847407 cites W2121269282 @default.
- W1445847407 cites W2145641562 @default.
- W1445847407 cites W2166244948 @default.
- W1445847407 cites W2207322593 @default.
- W1445847407 cites W2267688169 @default.
- W1445847407 cites W2490616435 @default.
- W1445847407 cites W2798794609 @default.
- W1445847407 cites W3004465863 @default.
- W1445847407 cites W568685918 @default.
- W1445847407 doi "https://doi.org/10.1016/bs.aiq.2015.03.003" @default.
- W1445847407 hasPublicationYear "2015" @default.
- W1445847407 type Work @default.
- W1445847407 sameAs 1445847407 @default.
- W1445847407 citedByCount "1" @default.
- W1445847407 countsByYear W14458474072014 @default.
- W1445847407 crossrefType "book-chapter" @default.
- W1445847407 hasAuthorship W1445847407A5034440812 @default.
- W1445847407 hasAuthorship W1445847407A5035278574 @default.
- W1445847407 hasAuthorship W1445847407A5044957636 @default.
- W1445847407 hasConcept C102519508 @default.
- W1445847407 hasConcept C111919701 @default.
- W1445847407 hasConcept C113630233 @default.
- W1445847407 hasConcept C114852677 @default.
- W1445847407 hasConcept C121332964 @default.
- W1445847407 hasConcept C134306372 @default.
- W1445847407 hasConcept C147597530 @default.
- W1445847407 hasConcept C185592680 @default.
- W1445847407 hasConcept C2778572836 @default.
- W1445847407 hasConcept C2989467761 @default.
- W1445847407 hasConcept C33923547 @default.
- W1445847407 hasConcept C41008148 @default.
- W1445847407 hasConcept C62520636 @default.
- W1445847407 hasConceptScore W1445847407C102519508 @default.
- W1445847407 hasConceptScore W1445847407C111919701 @default.
- W1445847407 hasConceptScore W1445847407C113630233 @default.
- W1445847407 hasConceptScore W1445847407C114852677 @default.
- W1445847407 hasConceptScore W1445847407C121332964 @default.