Matches in SemOpenAlex for { <https://semopenalex.org/work/W144739785> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W144739785 endingPage "46" @default.
- W144739785 startingPage "32" @default.
- W144739785 abstract "Triple graph grammars (TGGs) provide a formal framework for bidirectional model transformations. As in practice, TGGs are primarily used in pure model-to-model transformation scenarios, tools for text-to-model and model-to-text transformations make them also applicable in text-to-text transformation contexts. This paper presents a solution for the text-to-text transformation case study of the Transformation Tool Contest 2014 on translating FIXML (an XML notation for financial transactions) to source code written in Java, C# or C++. The solution uses the HenshinTGG tool for specifying and executing model-to-model transformations based on the formal concept of TGGs as well as the Xtext tool for parsing XML content to yield its abstract syntax tree (text-to-model transformation) and serialising abstract syntax trees to source code (model-to-text transformation). The approach is evaluated concerning a given set of criteria. Triple graph grammars (TGGs) provide a formal framework for specifying consistent integrated models of source and target models in bidirectional model transformations. Correspondences between the elements of source and target models are defined by triple rules, from which operational rules for forward and backward transformations are derived automatically [5, 9]. Several tool implementations for TGGs exist [7]. Numerous case studies have proven the applicability of TGGs in model-to-model (M2M) transformation scenarios [4, 3]. In [6], we presented an approach for applying TGGs in a text-to-text (T2T) transformation context for translating satellite procedures. We adapt this approach to provide a solution for the T2T transformation case study of the TTC 2014 [8]. We evaluate the solution based on fixed criteria: complexity, accuracy, development effort, fault tolerance, execution time, and modularity. As depicted in Fig. 1, our transformation involves these steps: A text-to-model (T2M) transformation step parses the the content of a FIXML file and yields its abstract syntax tree (AST). Then, a M2M transformation is performed based on a given TGG to convert the source AST into the target AST. Finally, the target AST is serialised back to source code via a model-to-text (M2T) transformation. We combine Xtext [1] with the HenshinTGG tool to perform the T2M and M2T steps via Xtext and the M2M step via HenshinTGG. Xtext is a tool for specifying domain specific textual languages and generating parsers and serialisers for them. The parser checks that the input source code is well-formed and the serialiser ensures that the generated output source code is well-defined. HenshinTGG is an extension of the EMF-Henshin tool [2] and is used for specifying and executing M2M transformations based on the formal concept of TGGs. The solution is available on SHARE 1 . The paper is structured as follows. Sec. 2 describes the TGG tool implementation HenshinTGG, Sec. 3 presents the details of our solution for the case study, Sec. 4 evaluates the solution concerning the given criteria and Sec. 5 provides a conclusion and describes potential extensions." @default.
- W144739785 created "2016-06-24" @default.
- W144739785 creator A5009071576 @default.
- W144739785 creator A5032731587 @default.
- W144739785 creator A5059396373 @default.
- W144739785 creator A5071611431 @default.
- W144739785 creator A5088939618 @default.
- W144739785 date "2014-01-01" @default.
- W144739785 modified "2023-09-26" @default.
- W144739785 title "Solving the FIXML2Code-case study with HenshinTGG" @default.
- W144739785 cites W1485542170 @default.
- W144739785 cites W1535095256 @default.
- W144739785 cites W1548957673 @default.
- W144739785 cites W1600482346 @default.
- W144739785 cites W1827614599 @default.
- W144739785 cites W1835675305 @default.
- W144739785 cites W1906292202 @default.
- W144739785 cites W2028884783 @default.
- W144739785 cites W2294096000 @default.
- W144739785 hasPublicationYear "2014" @default.
- W144739785 type Work @default.
- W144739785 sameAs 144739785 @default.
- W144739785 citedByCount "0" @default.
- W144739785 crossrefType "journal-article" @default.
- W144739785 hasAuthorship W144739785A5009071576 @default.
- W144739785 hasAuthorship W144739785A5032731587 @default.
- W144739785 hasAuthorship W144739785A5059396373 @default.
- W144739785 hasAuthorship W144739785A5071611431 @default.
- W144739785 hasAuthorship W144739785A5088939618 @default.
- W144739785 hasConcept C104317684 @default.
- W144739785 hasConcept C111919701 @default.
- W144739785 hasConcept C132525143 @default.
- W144739785 hasConcept C133162039 @default.
- W144739785 hasConcept C154945302 @default.
- W144739785 hasConcept C185592680 @default.
- W144739785 hasConcept C186644900 @default.
- W144739785 hasConcept C199360897 @default.
- W144739785 hasConcept C204241405 @default.
- W144739785 hasConcept C26517878 @default.
- W144739785 hasConcept C2776436953 @default.
- W144739785 hasConcept C2779791154 @default.
- W144739785 hasConcept C38652104 @default.
- W144739785 hasConcept C41008148 @default.
- W144739785 hasConcept C43126263 @default.
- W144739785 hasConcept C55493867 @default.
- W144739785 hasConcept C558772884 @default.
- W144739785 hasConcept C58646249 @default.
- W144739785 hasConcept C80444323 @default.
- W144739785 hasConcept C8797682 @default.
- W144739785 hasConceptScore W144739785C104317684 @default.
- W144739785 hasConceptScore W144739785C111919701 @default.
- W144739785 hasConceptScore W144739785C132525143 @default.
- W144739785 hasConceptScore W144739785C133162039 @default.
- W144739785 hasConceptScore W144739785C154945302 @default.
- W144739785 hasConceptScore W144739785C185592680 @default.
- W144739785 hasConceptScore W144739785C186644900 @default.
- W144739785 hasConceptScore W144739785C199360897 @default.
- W144739785 hasConceptScore W144739785C204241405 @default.
- W144739785 hasConceptScore W144739785C26517878 @default.
- W144739785 hasConceptScore W144739785C2776436953 @default.
- W144739785 hasConceptScore W144739785C2779791154 @default.
- W144739785 hasConceptScore W144739785C38652104 @default.
- W144739785 hasConceptScore W144739785C41008148 @default.
- W144739785 hasConceptScore W144739785C43126263 @default.
- W144739785 hasConceptScore W144739785C55493867 @default.
- W144739785 hasConceptScore W144739785C558772884 @default.
- W144739785 hasConceptScore W144739785C58646249 @default.
- W144739785 hasConceptScore W144739785C80444323 @default.
- W144739785 hasConceptScore W144739785C8797682 @default.
- W144739785 hasLocation W1447397851 @default.
- W144739785 hasOpenAccess W144739785 @default.
- W144739785 hasPrimaryLocation W1447397851 @default.
- W144739785 hasRelatedWork W1519151404 @default.
- W144739785 hasRelatedWork W1541317711 @default.
- W144739785 hasRelatedWork W156775712 @default.
- W144739785 hasRelatedWork W170857486 @default.
- W144739785 hasRelatedWork W1735907894 @default.
- W144739785 hasRelatedWork W1755149015 @default.
- W144739785 hasRelatedWork W1785023301 @default.
- W144739785 hasRelatedWork W1854891796 @default.
- W144739785 hasRelatedWork W1986683046 @default.
- W144739785 hasRelatedWork W1991571782 @default.
- W144739785 hasRelatedWork W2015092736 @default.
- W144739785 hasRelatedWork W2040657499 @default.
- W144739785 hasRelatedWork W2079133767 @default.
- W144739785 hasRelatedWork W2124638003 @default.
- W144739785 hasRelatedWork W2169424671 @default.
- W144739785 hasRelatedWork W2469498776 @default.
- W144739785 hasRelatedWork W3181769029 @default.
- W144739785 hasRelatedWork W45191611 @default.
- W144739785 hasRelatedWork W79705588 @default.
- W144739785 hasRelatedWork W961744836 @default.
- W144739785 isParatext "false" @default.
- W144739785 isRetracted "false" @default.
- W144739785 magId "144739785" @default.
- W144739785 workType "article" @default.