Matches in SemOpenAlex for { <https://semopenalex.org/work/W144830706> ?p ?o ?g. }
- W144830706 endingPage "276" @default.
- W144830706 startingPage "250" @default.
- W144830706 abstract "Mining information and knowledge from very large databases is recognized as a key research area in machine learning and expert systems. In the current research, we use connectionist and evolutionary models for learning software effort. Specifically, we use these models to learn the software effort from a set of training data set containing information on software projects and test the performance of the model on a holdout sample. The design issues of developing connectionist and evolutionary models for mining software effort patterns on a data set are described. Our research indicates that connectionist and evolutionary models, whenever carefully designed, hold a great promise for knowledge discovery and forecasting software effort." @default.
- W144830706 created "2016-06-24" @default.
- W144830706 creator A5018960424 @default.
- W144830706 creator A5021501604 @default.
- W144830706 date "2011-05-24" @default.
- W144830706 modified "2023-09-26" @default.
- W144830706 title "Connectionist and Evolutionary Models for Learning, Discovering and Forecasting Software Effort" @default.
- W144830706 cites W1487801850 @default.
- W144830706 cites W1499049447 @default.
- W144830706 cites W1506285740 @default.
- W144830706 cites W1520890006 @default.
- W144830706 cites W1524704912 @default.
- W144830706 cites W1559570474 @default.
- W144830706 cites W1575476631 @default.
- W144830706 cites W1576818901 @default.
- W144830706 cites W1577072181 @default.
- W144830706 cites W1578959085 @default.
- W144830706 cites W1580975575 @default.
- W144830706 cites W1587157435 @default.
- W144830706 cites W1589187426 @default.
- W144830706 cites W1594380696 @default.
- W144830706 cites W1597161471 @default.
- W144830706 cites W175881386 @default.
- W144830706 cites W19621276 @default.
- W144830706 cites W1966237354 @default.
- W144830706 cites W1969341260 @default.
- W144830706 cites W1974244838 @default.
- W144830706 cites W2001619934 @default.
- W144830706 cites W20184837 @default.
- W144830706 cites W2029909858 @default.
- W144830706 cites W2030969394 @default.
- W144830706 cites W2034070602 @default.
- W144830706 cites W2045313701 @default.
- W144830706 cites W2063707594 @default.
- W144830706 cites W2078381436 @default.
- W144830706 cites W2087564756 @default.
- W144830706 cites W2095897464 @default.
- W144830706 cites W2097529207 @default.
- W144830706 cites W2100406636 @default.
- W144830706 cites W2101927907 @default.
- W144830706 cites W2104873529 @default.
- W144830706 cites W2107844279 @default.
- W144830706 cites W2108457969 @default.
- W144830706 cites W2110039140 @default.
- W144830706 cites W2110825163 @default.
- W144830706 cites W2113050263 @default.
- W144830706 cites W2123479138 @default.
- W144830706 cites W2128061541 @default.
- W144830706 cites W2133453725 @default.
- W144830706 cites W2136000097 @default.
- W144830706 cites W2140797335 @default.
- W144830706 cites W2149483835 @default.
- W144830706 cites W2149706766 @default.
- W144830706 cites W2150778199 @default.
- W144830706 cites W2153028052 @default.
- W144830706 cites W2158454296 @default.
- W144830706 cites W2162010213 @default.
- W144830706 cites W2166559705 @default.
- W144830706 cites W2167081989 @default.
- W144830706 cites W2605974740 @default.
- W144830706 cites W3017143921 @default.
- W144830706 cites W3085162807 @default.
- W144830706 cites W3121126077 @default.
- W144830706 cites W54893182 @default.
- W144830706 cites W88158985 @default.
- W144830706 doi "https://doi.org/10.4018/978-1-59140-057-8.ch014" @default.
- W144830706 hasPublicationYear "2011" @default.
- W144830706 type Work @default.
- W144830706 sameAs 144830706 @default.
- W144830706 citedByCount "0" @default.
- W144830706 crossrefType "book-chapter" @default.
- W144830706 hasAuthorship W144830706A5018960424 @default.
- W144830706 hasAuthorship W144830706A5021501604 @default.
- W144830706 hasConcept C119857082 @default.
- W144830706 hasConcept C124101348 @default.
- W144830706 hasConcept C154945302 @default.
- W144830706 hasConcept C177264268 @default.
- W144830706 hasConcept C199360897 @default.
- W144830706 hasConcept C26517878 @default.
- W144830706 hasConcept C2777904410 @default.
- W144830706 hasConcept C38652104 @default.
- W144830706 hasConcept C41008148 @default.
- W144830706 hasConcept C50644808 @default.
- W144830706 hasConcept C8521452 @default.
- W144830706 hasConceptScore W144830706C119857082 @default.
- W144830706 hasConceptScore W144830706C124101348 @default.
- W144830706 hasConceptScore W144830706C154945302 @default.
- W144830706 hasConceptScore W144830706C177264268 @default.
- W144830706 hasConceptScore W144830706C199360897 @default.
- W144830706 hasConceptScore W144830706C26517878 @default.
- W144830706 hasConceptScore W144830706C2777904410 @default.
- W144830706 hasConceptScore W144830706C38652104 @default.
- W144830706 hasConceptScore W144830706C41008148 @default.
- W144830706 hasConceptScore W144830706C50644808 @default.
- W144830706 hasConceptScore W144830706C8521452 @default.
- W144830706 hasLocation W1448307061 @default.
- W144830706 hasOpenAccess W144830706 @default.
- W144830706 hasPrimaryLocation W1448307061 @default.