Matches in SemOpenAlex for { <https://semopenalex.org/work/W145148932> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W145148932 abstract "A large amount of previous literature proposed and studied variable selection procedures for high dimensional data, and most of the researchers focused on the selection properties as well as the point estimation properties. However, there have been limited studies considering the construction of confidence intervals for the highdimensional variable selection problems. In this thesis, we propose two approaches to address this problem for high-dimensional linear and accelerated failure time models. This work is motivated by recent cancer research, in which researchers would like to analyze the clinical and genomic information simultaneously, so as to find out the potential risk factors for different types of cancers. Moreover, they wish to account for the effect of the clinical information while selecting the potential genes and pathways that are associated with the disease. In order to do so, we consider a model with two sets of dependent variables. One set consists of low-dimensional yet practically more interpretable variables, such as clinical and treatment variables. The other set consists of a large number of variables that can be correlated with the response variable in complicated ways, an example being gene expression levels. Two approaches are established to select crucial variables from the highdimensional variable set and estimate the confidence intervals for the parameters in the low-dimensional set. The first approach is called the partially penalized method. This method first selects variables from the high-dimensional set and then fits a traditional regression model using the selected variables along with the variables in the" @default.
- W145148932 created "2016-06-24" @default.
- W145148932 creator A5068919120 @default.
- W145148932 date "2018-11-29" @default.
- W145148932 modified "2023-10-11" @default.
- W145148932 title "Statistical inference in high dimensional linear and AFT models" @default.
- W145148932 cites W1255676896 @default.
- W145148932 cites W1509689762 @default.
- W145148932 cites W1965169081 @default.
- W145148932 cites W1975753311 @default.
- W145148932 cites W1975766983 @default.
- W145148932 cites W1975900555 @default.
- W145148932 cites W1985732394 @default.
- W145148932 cites W1987243184 @default.
- W145148932 cites W1989177425 @default.
- W145148932 cites W1995314183 @default.
- W145148932 cites W2002316706 @default.
- W145148932 cites W2006021405 @default.
- W145148932 cites W2009259977 @default.
- W145148932 cites W2020925091 @default.
- W145148932 cites W2021894828 @default.
- W145148932 cites W2025183726 @default.
- W145148932 cites W2038715514 @default.
- W145148932 cites W2047570474 @default.
- W145148932 cites W2058815839 @default.
- W145148932 cites W2063978378 @default.
- W145148932 cites W2066385937 @default.
- W145148932 cites W2068745974 @default.
- W145148932 cites W2069119359 @default.
- W145148932 cites W2074291883 @default.
- W145148932 cites W2074682976 @default.
- W145148932 cites W2078793132 @default.
- W145148932 cites W2083972068 @default.
- W145148932 cites W2092824208 @default.
- W145148932 cites W2096283457 @default.
- W145148932 cites W2097360283 @default.
- W145148932 cites W2111162388 @default.
- W145148932 cites W2116385834 @default.
- W145148932 cites W2120846249 @default.
- W145148932 cites W2125892231 @default.
- W145148932 cites W2134385763 @default.
- W145148932 cites W2135046866 @default.
- W145148932 cites W2150940164 @default.
- W145148932 cites W2154972590 @default.
- W145148932 cites W2168175751 @default.
- W145148932 cites W2182409576 @default.
- W145148932 cites W2486032467 @default.
- W145148932 cites W3100041486 @default.
- W145148932 doi "https://doi.org/10.17077/etd.shbbgo5x" @default.
- W145148932 hasPublicationYear "2018" @default.
- W145148932 type Work @default.
- W145148932 sameAs 145148932 @default.
- W145148932 citedByCount "0" @default.
- W145148932 crossrefType "dissertation" @default.
- W145148932 hasAuthorship W145148932A5068919120 @default.
- W145148932 hasConcept C105795698 @default.
- W145148932 hasConcept C134261354 @default.
- W145148932 hasConcept C149782125 @default.
- W145148932 hasConcept C154945302 @default.
- W145148932 hasConcept C2522767166 @default.
- W145148932 hasConcept C2776214188 @default.
- W145148932 hasConcept C33923547 @default.
- W145148932 hasConcept C41008148 @default.
- W145148932 hasConceptScore W145148932C105795698 @default.
- W145148932 hasConceptScore W145148932C134261354 @default.
- W145148932 hasConceptScore W145148932C149782125 @default.
- W145148932 hasConceptScore W145148932C154945302 @default.
- W145148932 hasConceptScore W145148932C2522767166 @default.
- W145148932 hasConceptScore W145148932C2776214188 @default.
- W145148932 hasConceptScore W145148932C33923547 @default.
- W145148932 hasConceptScore W145148932C41008148 @default.
- W145148932 hasLocation W1451489321 @default.
- W145148932 hasOpenAccess W145148932 @default.
- W145148932 hasPrimaryLocation W1451489321 @default.
- W145148932 hasRelatedWork W137830373 @default.
- W145148932 hasRelatedWork W1981934814 @default.
- W145148932 hasRelatedWork W2055243143 @default.
- W145148932 hasRelatedWork W2103073163 @default.
- W145148932 hasRelatedWork W2134368299 @default.
- W145148932 hasRelatedWork W3000984192 @default.
- W145148932 hasRelatedWork W3202526960 @default.
- W145148932 hasRelatedWork W4321348134 @default.
- W145148932 hasRelatedWork W3017020030 @default.
- W145148932 hasRelatedWork W4286952477 @default.
- W145148932 isParatext "false" @default.
- W145148932 isRetracted "false" @default.
- W145148932 magId "145148932" @default.
- W145148932 workType "dissertation" @default.