Matches in SemOpenAlex for { <https://semopenalex.org/work/W14578209> ?p ?o ?g. }
- W14578209 abstract "Speech recognition performance degrades significantly in distant-talking environments, where the speech signals can be severely distorted by additive noise and reverberation. In such environments, the use of microphone arrays has been proposed as a means of improving the quality of captured speech signals. Currently, microphone-array-based speech recognition is performed in two independent stages: array processing and then recognition. Array processing algorithms designed for signal enhancement are applied in order to reduce the distortion in the speech waveform prior to feature extraction and recognition. This approach assumes that improving the quality of the speech waveform will necessarily result in improved recognition performance. However, speech recognition systems are statistical pattern classifiers that process features derived from the speech waveform, not the waveform itself. An array processing algorithm can therefore only be expected to improve recognition if it maximizes or at least increases the likelihood of the correct hypothesis, relative to other competing hypotheses. In this thesis a new approach to microphone-array processing is proposed in which the goal of the array processing is not to generate an enhanced output waveform but rather to generate a sequence of features which maximizes the likelihood of the correct hypothesis. In this approach, called Likelihood Maximizing Beamforming (LIMABEAM), information from the speech recognition system itself is used to optimize a filter-and-sum beamformer. Using LIMABEAM, significant improvements in recognition accuracy over conventional array processing approaches are obtained in moderately reverberant environments over a wide range of signal-to-noise ratios. However, only limited improvements are obtained in environments with more severe reverberation. To address this issue, a subband filtering approach to LIMABEAM is proposed, called Subband-Likelihood Maximizing Beamforming (S-LIMABEAM). S-LIMABEAM employs a new subband filter-and-sum architecture which explicitly considers how the features used for recognition are computed. This enables S-LIMABEAM to achieve dramatically improved performance over the original LIMABEAM algorithm in highly reverberant environments. Because the algorithms in this thesis are data-driven, they do not require a priori knowledge of the room impulse response, nor any particular number of microphones or array geometry. To demonstrate this, LIMABEAM and S-LIMABEAM are evaluated using multiple array configurations and environments including an array-equipped personal digital assistant (PDA) and a meeting room with a few tabletop microphones. In all cases, the proposed algorithms significantly outperform conventional array processing approaches." @default.
- W14578209 created "2016-06-24" @default.
- W14578209 creator A5041313589 @default.
- W14578209 creator A5069424860 @default.
- W14578209 date "2003-01-01" @default.
- W14578209 modified "2023-09-23" @default.
- W14578209 title "Microphone array processing for robust speech recognition" @default.
- W14578209 cites W140747314 @default.
- W14578209 cites W1506558619 @default.
- W14578209 cites W1508165687 @default.
- W14578209 cites W1515932869 @default.
- W14578209 cites W151797875 @default.
- W14578209 cites W1560013842 @default.
- W14578209 cites W157496533 @default.
- W14578209 cites W1591607137 @default.
- W14578209 cites W1651870529 @default.
- W14578209 cites W1665196592 @default.
- W14578209 cites W1808196926 @default.
- W14578209 cites W1816504957 @default.
- W14578209 cites W1880127577 @default.
- W14578209 cites W1932968309 @default.
- W14578209 cites W1963844140 @default.
- W14578209 cites W1991133427 @default.
- W14578209 cites W1993294423 @default.
- W14578209 cites W1994630425 @default.
- W14578209 cites W1994850439 @default.
- W14578209 cites W2035090801 @default.
- W14578209 cites W2045043668 @default.
- W14578209 cites W2046317813 @default.
- W14578209 cites W2066947968 @default.
- W14578209 cites W2075475494 @default.
- W14578209 cites W2076156369 @default.
- W14578209 cites W2080921589 @default.
- W14578209 cites W2093225945 @default.
- W14578209 cites W2099655464 @default.
- W14578209 cites W2099984896 @default.
- W14578209 cites W2100415974 @default.
- W14578209 cites W2100678434 @default.
- W14578209 cites W2101609516 @default.
- W14578209 cites W2107570138 @default.
- W14578209 cites W2108384452 @default.
- W14578209 cites W2113416157 @default.
- W14578209 cites W2113850638 @default.
- W14578209 cites W2113911479 @default.
- W14578209 cites W2116490148 @default.
- W14578209 cites W2116590962 @default.
- W14578209 cites W2116766578 @default.
- W14578209 cites W2117678320 @default.
- W14578209 cites W2123670418 @default.
- W14578209 cites W2124190742 @default.
- W14578209 cites W2125838338 @default.
- W14578209 cites W2126597753 @default.
- W14578209 cites W2127571480 @default.
- W14578209 cites W2130432819 @default.
- W14578209 cites W2130839206 @default.
- W14578209 cites W2132297779 @default.
- W14578209 cites W2135031686 @default.
- W14578209 cites W2139813639 @default.
- W14578209 cites W2140098797 @default.
- W14578209 cites W2144244295 @default.
- W14578209 cites W214562933 @default.
- W14578209 cites W2147794814 @default.
- W14578209 cites W2148154194 @default.
- W14578209 cites W2148965074 @default.
- W14578209 cites W2153418894 @default.
- W14578209 cites W2156201704 @default.
- W14578209 cites W2157774199 @default.
- W14578209 cites W2158541934 @default.
- W14578209 cites W2159158911 @default.
- W14578209 cites W2163704482 @default.
- W14578209 cites W2167193734 @default.
- W14578209 cites W2167583760 @default.
- W14578209 cites W2245569228 @default.
- W14578209 cites W3141839452 @default.
- W14578209 cites W34580700 @default.
- W14578209 cites W37171856 @default.
- W14578209 cites W80526705 @default.
- W14578209 cites W1601032495 @default.
- W14578209 cites W1954839664 @default.
- W14578209 cites W2136679033 @default.
- W14578209 hasPublicationYear "2003" @default.
- W14578209 type Work @default.
- W14578209 sameAs 14578209 @default.
- W14578209 citedByCount "41" @default.
- W14578209 countsByYear W145782092012 @default.
- W14578209 countsByYear W145782092013 @default.
- W14578209 countsByYear W145782092014 @default.
- W14578209 countsByYear W145782092015 @default.
- W14578209 countsByYear W145782092016 @default.
- W14578209 countsByYear W145782092017 @default.
- W14578209 countsByYear W145782092020 @default.
- W14578209 crossrefType "journal-article" @default.
- W14578209 hasAuthorship W14578209A5041313589 @default.
- W14578209 hasAuthorship W14578209A5069424860 @default.
- W14578209 hasConcept C100675267 @default.
- W14578209 hasConcept C104267543 @default.
- W14578209 hasConcept C106131492 @default.
- W14578209 hasConcept C115961682 @default.
- W14578209 hasConcept C121332964 @default.
- W14578209 hasConcept C153180895 @default.