Matches in SemOpenAlex for { <https://semopenalex.org/work/W1462139170> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W1462139170 endingPage "767" @default.
- W1462139170 startingPage "756" @default.
- W1462139170 abstract "Social media, such as Twitter and Facebook, allow the creation, sharing and exchange of information among people, companies and brands. This information can be used for several purposes, such as to understand consumers and their preferences. In this direction, the sentiment analysis can be used as a feedback mechanism. This analysis corresponds to classifying a text according to the sentiment that the writer intended to transmit. A basic sentiment classifier determines the sentiment polarity (negative, neutral or positive) of a given text at the document, sentence, or feature/aspect level. Advanced types may consider other elements like the emotional state (e.g. angry, sad, happy), affective states (e.g. pleasure and pain), motivational states (e.g. hunger and curiosity), temperaments, among others. In general, there are two main approaches to attribute sentiment to tweets: based on knowledge; or based on machine learning algorithms. In the latter case, the learning algorithm requires a pre-classified data sample to determine the class of new data. Typically, the sample is pre-classified manually, making the process time consuming and reducing its real time applicability for big data. This paper proposes a polarity analysis framework for Twitter messages, which combines both approaches and an automatic contextual module. To assess the performance of the proposed framework, four text datasets from the literature are used. Five different types of classifiers were considered: Naïve Bayes (NB); Support Vector Machines (SVM); Decision Trees (J48); and Nearest Neighbors (KNN). The results show that the proposal is a suitable framework to automate the whole polarity analysis process, providing high accuracy levels and low false positive rates." @default.
- W1462139170 created "2016-06-24" @default.
- W1462139170 creator A5036119057 @default.
- W1462139170 creator A5070935465 @default.
- W1462139170 creator A5084032640 @default.
- W1462139170 date "2015-11-01" @default.
- W1462139170 modified "2023-10-12" @default.
- W1462139170 title "A polarity analysis framework for Twitter messages" @default.
- W1462139170 cites W1930967223 @default.
- W1462139170 cites W2003303386 @default.
- W1462139170 cites W2015525779 @default.
- W1462139170 cites W2035265584 @default.
- W1462139170 cites W2052999097 @default.
- W1462139170 cites W2057308560 @default.
- W1462139170 cites W2133341045 @default.
- W1462139170 cites W2140910804 @default.
- W1462139170 cites W2171468534 @default.
- W1462139170 cites W3098123823 @default.
- W1462139170 cites W3103022228 @default.
- W1462139170 cites W4205184193 @default.
- W1462139170 cites W4239946314 @default.
- W1462139170 doi "https://doi.org/10.1016/j.amc.2015.08.059" @default.
- W1462139170 hasPublicationYear "2015" @default.
- W1462139170 type Work @default.
- W1462139170 sameAs 1462139170 @default.
- W1462139170 citedByCount "93" @default.
- W1462139170 countsByYear W14621391702016 @default.
- W1462139170 countsByYear W14621391702017 @default.
- W1462139170 countsByYear W14621391702018 @default.
- W1462139170 countsByYear W14621391702019 @default.
- W1462139170 countsByYear W14621391702020 @default.
- W1462139170 countsByYear W14621391702021 @default.
- W1462139170 countsByYear W14621391702022 @default.
- W1462139170 crossrefType "journal-article" @default.
- W1462139170 hasAuthorship W1462139170A5036119057 @default.
- W1462139170 hasAuthorship W1462139170A5070935465 @default.
- W1462139170 hasAuthorship W1462139170A5084032640 @default.
- W1462139170 hasConcept C119857082 @default.
- W1462139170 hasConcept C12267149 @default.
- W1462139170 hasConcept C124101348 @default.
- W1462139170 hasConcept C1491633281 @default.
- W1462139170 hasConcept C154945302 @default.
- W1462139170 hasConcept C185592680 @default.
- W1462139170 hasConcept C198531522 @default.
- W1462139170 hasConcept C204321447 @default.
- W1462139170 hasConcept C2777361361 @default.
- W1462139170 hasConcept C2777530160 @default.
- W1462139170 hasConcept C41008148 @default.
- W1462139170 hasConcept C43617362 @default.
- W1462139170 hasConcept C52001869 @default.
- W1462139170 hasConcept C52003472 @default.
- W1462139170 hasConcept C54355233 @default.
- W1462139170 hasConcept C66402592 @default.
- W1462139170 hasConcept C86803240 @default.
- W1462139170 hasConcept C95623464 @default.
- W1462139170 hasConceptScore W1462139170C119857082 @default.
- W1462139170 hasConceptScore W1462139170C12267149 @default.
- W1462139170 hasConceptScore W1462139170C124101348 @default.
- W1462139170 hasConceptScore W1462139170C1491633281 @default.
- W1462139170 hasConceptScore W1462139170C154945302 @default.
- W1462139170 hasConceptScore W1462139170C185592680 @default.
- W1462139170 hasConceptScore W1462139170C198531522 @default.
- W1462139170 hasConceptScore W1462139170C204321447 @default.
- W1462139170 hasConceptScore W1462139170C2777361361 @default.
- W1462139170 hasConceptScore W1462139170C2777530160 @default.
- W1462139170 hasConceptScore W1462139170C41008148 @default.
- W1462139170 hasConceptScore W1462139170C43617362 @default.
- W1462139170 hasConceptScore W1462139170C52001869 @default.
- W1462139170 hasConceptScore W1462139170C52003472 @default.
- W1462139170 hasConceptScore W1462139170C54355233 @default.
- W1462139170 hasConceptScore W1462139170C66402592 @default.
- W1462139170 hasConceptScore W1462139170C86803240 @default.
- W1462139170 hasConceptScore W1462139170C95623464 @default.
- W1462139170 hasLocation W14621391701 @default.
- W1462139170 hasOpenAccess W1462139170 @default.
- W1462139170 hasPrimaryLocation W14621391701 @default.
- W1462139170 hasRelatedWork W1984947604 @default.
- W1462139170 hasRelatedWork W2149097950 @default.
- W1462139170 hasRelatedWork W2505282017 @default.
- W1462139170 hasRelatedWork W2995276271 @default.
- W1462139170 hasRelatedWork W2997511728 @default.
- W1462139170 hasRelatedWork W3013263334 @default.
- W1462139170 hasRelatedWork W3036853918 @default.
- W1462139170 hasRelatedWork W3124731355 @default.
- W1462139170 hasRelatedWork W3211372245 @default.
- W1462139170 hasRelatedWork W4214653893 @default.
- W1462139170 hasVolume "270" @default.
- W1462139170 isParatext "false" @default.
- W1462139170 isRetracted "false" @default.
- W1462139170 magId "1462139170" @default.
- W1462139170 workType "article" @default.