Matches in SemOpenAlex for { <https://semopenalex.org/work/W146348550> ?p ?o ?g. }
Showing items 1 to 54 of
54
with 100 items per page.
- W146348550 endingPage "718" @default.
- W146348550 startingPage "707" @default.
- W146348550 abstract "A vertex colouring assigns to each vertex of a graph a colour such that adjacent vertices have different colours. The algorithmic complexity of the Colouring problem, asking for the smallest number of colours needed to vertex-colour a given graph, is known for a large number of graph classes. Notably it is NP-complete in general, but polynomial time solvable for perfect graphs. A triple of vertices of a graph is called an asteroidal triple if between any two of the vertices there is a path avoiding all neighbours of the third one. Asteroidal triple-free graphs form a graph class with a lot of interesting structural and algorithmic properties. Broersma et al. (ICALP 1997) asked to find out the algorithmic complexity of Colouring on AT-free graphs. Even the algorithmic complexity of the k-Colouring problem, which asks whether a graph can be coloured with at most a fixed number k of colours, remained unknown for AT-free graphs. First progress was made recently by Stacho who presented an O(n4) time algorithm for 3-colouring AT-free graphs (ISAAC 2010). In this paper we show that k-Colouring on AT-free graphs is in XP, i.e. polynomial time solvable for any fixed k. Even more, we present an algorithm using dynamic programming on an asteroidal decomposition which, for any fixed integers k and a, solves k-Colouring on any input graph G in time $mathcal{O}(f(a,k) cdot n^{g(a,k)})$, where a denotes the asteroidal number of G, and f(a,k) and g(a,k) are functions that do not depend on n. Hence for any fixed integer k, there is a polynomial time algorithm solving k-Colouring on graphs of bounded asteroidal number. The algorithm runs in time $mathcal{O}(n^{8k+2})$ on AT-free graphs." @default.
- W146348550 created "2016-06-24" @default.
- W146348550 creator A5029412954 @default.
- W146348550 creator A5069794832 @default.
- W146348550 date "2012-01-01" @default.
- W146348550 modified "2023-10-09" @default.
- W146348550 title "Colouring AT-Free Graphs" @default.
- W146348550 cites W1517921658 @default.
- W146348550 cites W1576739559 @default.
- W146348550 cites W1579049696 @default.
- W146348550 cites W1598992176 @default.
- W146348550 cites W1905917500 @default.
- W146348550 cites W1970088964 @default.
- W146348550 cites W1972937804 @default.
- W146348550 cites W2062004151 @default.
- W146348550 cites W2064544350 @default.
- W146348550 cites W2070838692 @default.
- W146348550 cites W2105257834 @default.
- W146348550 cites W2129287737 @default.
- W146348550 cites W2154520530 @default.
- W146348550 cites W3022747647 @default.
- W146348550 cites W4232336108 @default.
- W146348550 doi "https://doi.org/10.1007/978-3-642-33090-2_61" @default.
- W146348550 hasPublicationYear "2012" @default.
- W146348550 type Work @default.
- W146348550 sameAs 146348550 @default.
- W146348550 citedByCount "4" @default.
- W146348550 countsByYear W1463485502012 @default.
- W146348550 countsByYear W1463485502016 @default.
- W146348550 countsByYear W1463485502021 @default.
- W146348550 crossrefType "book-chapter" @default.
- W146348550 hasAuthorship W146348550A5029412954 @default.
- W146348550 hasAuthorship W146348550A5069794832 @default.
- W146348550 hasConcept C41008148 @default.
- W146348550 hasConceptScore W146348550C41008148 @default.
- W146348550 hasLocation W1463485501 @default.
- W146348550 hasOpenAccess W146348550 @default.
- W146348550 hasPrimaryLocation W1463485501 @default.
- W146348550 hasRelatedWork W2093578348 @default.
- W146348550 hasRelatedWork W2350741829 @default.
- W146348550 hasRelatedWork W2358668433 @default.
- W146348550 hasRelatedWork W2376932109 @default.
- W146348550 hasRelatedWork W2382290278 @default.
- W146348550 hasRelatedWork W2390279801 @default.
- W146348550 hasRelatedWork W2748952813 @default.
- W146348550 hasRelatedWork W2766271392 @default.
- W146348550 hasRelatedWork W2899084033 @default.
- W146348550 hasRelatedWork W3004735627 @default.
- W146348550 isParatext "false" @default.
- W146348550 isRetracted "false" @default.
- W146348550 magId "146348550" @default.
- W146348550 workType "book-chapter" @default.