Matches in SemOpenAlex for { <https://semopenalex.org/work/W1474056623> ?p ?o ?g. }
- W1474056623 abstract "This thesis discusses various issues in the estimation of models for count data. In the first part of the thesis, we derive an analytic expression for the bias of the maximum likelihood estimator (MLE) of the parameter in a doubly-truncated Poisson distribution, which proves highly effective as a means of bias correction. We explore the circumstances under which bias is likely to be problematic, and provide some indication of the statistical significance of the bias. Over a range of sample sizes, our method outperforms the alternative of bias correction via the parametric bootstrap. We show that MLEs obtained from sample sizes which elicit appreciable bias also have sampling distributions which are unsuited to be approximated by large-sample asymptotics, and bootstrapping confidence intervals around our bias-adjusted estimator is preferred, as two tiers of bootstrapping may incur a heavy computational burden.Modelling count data where the counts are strictly positive is often accomplished using a positive Poisson distribution. Inspection of the data sometimes reveals an excess of ones, analogous to zero-inflation in a regular Poisson model. The latter situation has well developed methods for modelling and testing, such as the zero-inflated Poisson (ZIP) model, and a score test for zero-inflation in a ZIP model. The issue of count inflation in a positive Poisson distribution does not seem to have been considered in a similar way. In the second part of the thesis, we propose a one-inflated positive Poisson (OIPP) model, and develop a score test to determine whether there are “too many” ones for a positive Poisson model to fit well. We explore the performance of our score test, and compare it to a likelihood ratio test, via Monte Carlo simulation. We find that the score test performs well, and that the OIPP model may be useful in many cases.The third part of the thesis considers the possibility of one-inflation in zero-truncated data, when overdispersion is present. We propose a new model to deal with such a phenomenon, the one-inflated zero-truncated negative binomial (OIZTNB) model. The finite sample properties of the maximum likelihood estimators for the parameters of such a model are discussed. This Chapter considers likelihood ratio tests which assist in specifying the OIZTNB model, and investigates the finite sample properties of such tests. The OIZTNB model is illustrated using the medpar data set, which describes the hospital length of stay for a set of patients in Arizona. This is a data set that is widely used to highlight the merits of the zero-truncated negative binomial (ZTNB) model. We find that our OIZTNB model fits the data better than does the ZTNB model, and this leads us to conclude that the data are generated by a one-inflated process." @default.
- W1474056623 created "2016-06-24" @default.
- W1474056623 creator A5010391204 @default.
- W1474056623 date "2012-01-01" @default.
- W1474056623 modified "2023-09-27" @default.
- W1474056623 title "Econometric Analysis of Non-Standard Count Data" @default.
- W1474056623 cites W114657769 @default.
- W1474056623 cites W121938757 @default.
- W1474056623 cites W1552247668 @default.
- W1474056623 cites W1583862312 @default.
- W1474056623 cites W1588906102 @default.
- W1474056623 cites W1830719945 @default.
- W1474056623 cites W1851612831 @default.
- W1474056623 cites W1967154051 @default.
- W1474056623 cites W1972707698 @default.
- W1474056623 cites W1973554447 @default.
- W1474056623 cites W1973628995 @default.
- W1474056623 cites W1985314606 @default.
- W1474056623 cites W1994566447 @default.
- W1474056623 cites W1995945562 @default.
- W1474056623 cites W1998510868 @default.
- W1474056623 cites W2000965067 @default.
- W1474056623 cites W2001222925 @default.
- W1474056623 cites W2004135113 @default.
- W1474056623 cites W2005903772 @default.
- W1474056623 cites W2015459095 @default.
- W1474056623 cites W2016127689 @default.
- W1474056623 cites W2017137572 @default.
- W1474056623 cites W2030379889 @default.
- W1474056623 cites W2038329979 @default.
- W1474056623 cites W2039993710 @default.
- W1474056623 cites W2041869004 @default.
- W1474056623 cites W2043415670 @default.
- W1474056623 cites W2047828157 @default.
- W1474056623 cites W2050561526 @default.
- W1474056623 cites W2051031773 @default.
- W1474056623 cites W2055538577 @default.
- W1474056623 cites W2059749610 @default.
- W1474056623 cites W2070243418 @default.
- W1474056623 cites W2071978229 @default.
- W1474056623 cites W2076237237 @default.
- W1474056623 cites W2078129874 @default.
- W1474056623 cites W2082178515 @default.
- W1474056623 cites W2085205569 @default.
- W1474056623 cites W2092755067 @default.
- W1474056623 cites W2097879961 @default.
- W1474056623 cites W2099362404 @default.
- W1474056623 cites W2102810005 @default.
- W1474056623 cites W2116350787 @default.
- W1474056623 cites W2117897510 @default.
- W1474056623 cites W2119445008 @default.
- W1474056623 cites W2119634512 @default.
- W1474056623 cites W2122093723 @default.
- W1474056623 cites W2124181495 @default.
- W1474056623 cites W2124298085 @default.
- W1474056623 cites W2147388619 @default.
- W1474056623 cites W2150462512 @default.
- W1474056623 cites W2151385137 @default.
- W1474056623 cites W2153941711 @default.
- W1474056623 cites W2161930071 @default.
- W1474056623 cites W2166481425 @default.
- W1474056623 cites W2312269896 @default.
- W1474056623 cites W2314916679 @default.
- W1474056623 cites W2319510730 @default.
- W1474056623 cites W2321746567 @default.
- W1474056623 cites W2329513593 @default.
- W1474056623 cites W2399109940 @default.
- W1474056623 cites W2400581990 @default.
- W1474056623 cites W2790417170 @default.
- W1474056623 cites W3121402432 @default.
- W1474056623 cites W3124079976 @default.
- W1474056623 cites W3124567902 @default.
- W1474056623 cites W5441433 @default.
- W1474056623 hasPublicationYear "2012" @default.
- W1474056623 type Work @default.
- W1474056623 sameAs 1474056623 @default.
- W1474056623 citedByCount "0" @default.
- W1474056623 crossrefType "dissertation" @default.
- W1474056623 hasAuthorship W1474056623A5010391204 @default.
- W1474056623 hasConcept C100906024 @default.
- W1474056623 hasConcept C105795698 @default.
- W1474056623 hasConcept C106131492 @default.
- W1474056623 hasConcept C117251300 @default.
- W1474056623 hasConcept C121332964 @default.
- W1474056623 hasConcept C129848803 @default.
- W1474056623 hasConcept C140779682 @default.
- W1474056623 hasConcept C144024400 @default.
- W1474056623 hasConcept C149782125 @default.
- W1474056623 hasConcept C149923435 @default.
- W1474056623 hasConcept C154606282 @default.
- W1474056623 hasConcept C159985019 @default.
- W1474056623 hasConcept C167723999 @default.
- W1474056623 hasConcept C178174526 @default.
- W1474056623 hasConcept C185429906 @default.
- W1474056623 hasConcept C192562407 @default.
- W1474056623 hasConcept C200941418 @default.
- W1474056623 hasConcept C204323151 @default.
- W1474056623 hasConcept C207609745 @default.
- W1474056623 hasConcept C2908647359 @default.
- W1474056623 hasConcept C31972630 @default.