Matches in SemOpenAlex for { <https://semopenalex.org/work/W147611341> ?p ?o ?g. }
- W147611341 abstract "The discrete wavelet transform using adaptive wavelet bases were investigated in classification, regression and experimental design applications for spectroscopic data. Adaptive wavelets have been used previously in near infrared spectroscopy fields for classification and regression; however methods to select the parameters required in the adaptive wavelet algorithm have been largely influenced by human interaction. Methods are developed within this thesis to select parameters for adaptive wavelets along with investigating the hypothesis of using multiple wavelet bases to improve the predictability of classification and regression models.Use of the adaptive discrete wavelet transform (ADWT) is illustrated using a repeated measures experiment. Near infrared (NIR) spectra of wine grape homogenates, from the Australian viticulture industry, underwent feature extraction via the ADWT and then modelled using penalised discriminate analysis, random forests and multiple adaptive regression splines. The correct classification rates of all three methods were substantially improved when the ADWT was applied. Scores from the ADWT penalised discriminate analysis (PDA) were analysed via multivariate analysis of variance (MANOVA) where it is reported that all main and interaction effects were significant. A bi-plot of the PDA scores illustrated the ease of which the ADWT extracted useful features from the spectra which were pertinent to the experimental design.A method of ADWT parameter selection was derived using the Bayes' information criteria (BIC) and demonstrated in an unsupervised classification problem. Using the BIC to select ADWT parameters removed the need to for human interaction to select good, optimised, adaptive wavelets. This outcome highlighted an advantage over standard wavelet types, which gave similar unsupervised classification performances, where adaptive wavelets only need to span a relatively small set of parameters to give good models while a prohibitively large number of standard wavelet types need to be trialled.Investigation of using multiple wavelet transforms to improve model performance - a new hypothesis in the field of chemometrics – was demonstrated in supervised classification and regression applications. In the classification example, SELDI-TOF mass spectra from a cancer study were analysed by pre-processing the spectra with a variety of standard wavelet types prior to variable elimination via a t-static and random forest approach. The retained variables were subsequently model using Treeboost where the specificity and sensitivity of the modelling process was improved by using multiple standard wavelet types compared to model using only one wavelet type alone. Models derived from wavelet processing were superior to models without preprocessing.Further evidence supporting the multiple wavelet feature extraction hypothesis was gained in the regression application. Using a publically available and well documented NIR dataset, a Bayes Metropolis regression was modified to incorporate multiple wavelet transforms by using constrained stacking rather than Bayes model averaging as the model ensemble method. Multiple adaptive wavelets and multiple standard wavelets were trialled with the multiple adaptive wavelet approach resulting in a superior predictive regression model when compared to: all single standard wavelet models, single adaptive wavelet models, multiple wavelet standard wavelet models and models cited previously in literature for the same data set.Methods for using adaptive wavelets, both multiple and singular wavelet bases, are outlined in this thesis with the general conclusion that the modelling process of NIR data (or juxta-positional data) can be substantially improved by the use of these wavelet transforms." @default.
- W147611341 created "2016-06-24" @default.
- W147611341 creator A5085651684 @default.
- W147611341 date "2012-05-01" @default.
- W147611341 modified "2023-09-26" @default.
- W147611341 title "Wavelet basis selection for spectroscopic data analysis" @default.
- W147611341 cites W1964707573 @default.
- W147611341 cites W1967809501 @default.
- W147611341 cites W1969428313 @default.
- W147611341 cites W1970540819 @default.
- W147611341 cites W1976049530 @default.
- W147611341 cites W1976611840 @default.
- W147611341 cites W1980149518 @default.
- W147611341 cites W1981073019 @default.
- W147611341 cites W1988790447 @default.
- W147611341 cites W1996623543 @default.
- W147611341 cites W1997974027 @default.
- W147611341 cites W2005345572 @default.
- W147611341 cites W2007413732 @default.
- W147611341 cites W2010756188 @default.
- W147611341 cites W2016090370 @default.
- W147611341 cites W2043689097 @default.
- W147611341 cites W2047555270 @default.
- W147611341 cites W2047559914 @default.
- W147611341 cites W2052660575 @default.
- W147611341 cites W2056392803 @default.
- W147611341 cites W2057331441 @default.
- W147611341 cites W2062024414 @default.
- W147611341 cites W2062866666 @default.
- W147611341 cites W2066584123 @default.
- W147611341 cites W2070493638 @default.
- W147611341 cites W2085763346 @default.
- W147611341 cites W2098562143 @default.
- W147611341 cites W2102201073 @default.
- W147611341 cites W2108725536 @default.
- W147611341 cites W2111236842 @default.
- W147611341 cites W2117188745 @default.
- W147611341 cites W2121638006 @default.
- W147611341 cites W2126652700 @default.
- W147611341 cites W2131668296 @default.
- W147611341 cites W2161371306 @default.
- W147611341 cites W2168175751 @default.
- W147611341 cites W2172300860 @default.
- W147611341 cites W2330192890 @default.
- W147611341 cites W2479236352 @default.
- W147611341 cites W2912934387 @default.
- W147611341 cites W3085162807 @default.
- W147611341 cites W3099514962 @default.
- W147611341 cites W3644042 @default.
- W147611341 cites W415479053 @default.
- W147611341 cites W1981984725 @default.
- W147611341 cites W2135654565 @default.
- W147611341 hasPublicationYear "2012" @default.
- W147611341 type Work @default.
- W147611341 sameAs 147611341 @default.
- W147611341 citedByCount "0" @default.
- W147611341 crossrefType "dissertation" @default.
- W147611341 hasAuthorship W147611341A5085651684 @default.
- W147611341 hasConcept C105795698 @default.
- W147611341 hasConcept C148483581 @default.
- W147611341 hasConcept C152877465 @default.
- W147611341 hasConcept C153180895 @default.
- W147611341 hasConcept C154945302 @default.
- W147611341 hasConcept C196216189 @default.
- W147611341 hasConcept C33923547 @default.
- W147611341 hasConcept C41008148 @default.
- W147611341 hasConcept C44882253 @default.
- W147611341 hasConcept C46286280 @default.
- W147611341 hasConcept C47432892 @default.
- W147611341 hasConcept C64946054 @default.
- W147611341 hasConcept C69738355 @default.
- W147611341 hasConceptScore W147611341C105795698 @default.
- W147611341 hasConceptScore W147611341C148483581 @default.
- W147611341 hasConceptScore W147611341C152877465 @default.
- W147611341 hasConceptScore W147611341C153180895 @default.
- W147611341 hasConceptScore W147611341C154945302 @default.
- W147611341 hasConceptScore W147611341C196216189 @default.
- W147611341 hasConceptScore W147611341C33923547 @default.
- W147611341 hasConceptScore W147611341C41008148 @default.
- W147611341 hasConceptScore W147611341C44882253 @default.
- W147611341 hasConceptScore W147611341C46286280 @default.
- W147611341 hasConceptScore W147611341C47432892 @default.
- W147611341 hasConceptScore W147611341C64946054 @default.
- W147611341 hasConceptScore W147611341C69738355 @default.
- W147611341 hasLocation W1476113411 @default.
- W147611341 hasOpenAccess W147611341 @default.
- W147611341 hasPrimaryLocation W1476113411 @default.
- W147611341 hasRelatedWork W1987241099 @default.
- W147611341 hasRelatedWork W1995311990 @default.
- W147611341 hasRelatedWork W1999180328 @default.
- W147611341 hasRelatedWork W2019777533 @default.
- W147611341 hasRelatedWork W2037995295 @default.
- W147611341 hasRelatedWork W2046765834 @default.
- W147611341 hasRelatedWork W2057248472 @default.
- W147611341 hasRelatedWork W2072799868 @default.
- W147611341 hasRelatedWork W2073749042 @default.
- W147611341 hasRelatedWork W2085666419 @default.
- W147611341 hasRelatedWork W2129940690 @default.
- W147611341 hasRelatedWork W2135165013 @default.
- W147611341 hasRelatedWork W2168110672 @default.